Differential diagnosis of Alzheimer’s disease and vascular dementia using visual rating scales

Stamo Manouvelou, Vasileios Koutoulidis, Maria Tolia, Athanasios Gouliamos, Georgios Anyfantakis, Lia-Angela Moulopoulos, Sokratis G. Papageorgiou


Purpose: To determine the differential diagnosis of Alzheimer’s disease (AD) and vascular dementia (VaD) using visual rating scales.
Material and Methods: 119 brain Magnetic Resonance Imaging (MRI) examinations of patients diagnosed ei- ther with AD (n=85) or VaD (n=34) were assessed. Double blinded visual evaluation was performed by two neu- roradiologists. Final clinical diagnosis was set by a be- havioural neurologist. The following rating scales were valued: Pasquier rating scale (GCA), Fazekas Scale assess- ing both periventricular (PV) and white matter (WM) lesions. Posterior Cortical Atrophy (PCA) and scales re- garding specific cortical regions: dorso-frontal (DF), or bito-frontal (OF), anterior-cingulate (AC), basal ganglia (BG), anterior-temporal (AT), insula, lateral-temporal (LT), entorhinal (ERC), perirhinal (PRC), anterior-fusi- form cortex (AFC), anterior-hippocampus (AHIP) and posterior-hippocampus (PHIP). Both Left (L) and Right (R) hemispheres were examined.

Results: The indicators with the highest value of area under the curve (AUC) were Fazekas-WM (AUC: 0.906), Fazekas-PV (AUC: 0.894), R-ERC (AUC: 0.858) and L-ERC (AUC: 0.820). Best sensitivity for distinguishing VaD from AD was achieved by PCA (91%), R-ERC (91%), Fazekas-WM (89%) and L-ERC (87%). Highest specificity was achieved by Fazekas-WM (97%), R-PHIP (91%), L-PHIP (91%), R-AC


Dementia; Vascular; Alzheimer Disease; MRI

Full Text:



O’Brien JT, Wiseman R, Burton EJ, et al. Cognitive associations of subcortical white matter lesions in older people. Ann N Y Acad Sci 2002; 977: 436–444.

de Groot JC, de Leeuw FE, Oudkerk M, et al. Cerebral white matter lesions and cognitive function: the Rotterdam Scan Study. Ann Neurol 2000; 47: 145–151.

Schmidt R, Ropele S, Enzinger C, et al. White matter lesion progression, brain atrophy, and cognitive decline: the Austrian stroke prevention study. Ann Neurol 2005; 58: 610–616.

Van der Flier WM, van Straaten ECW, Barkhof F, et al. Small vessel disease and general cognitive function in nondisabled elderly: the LADIS study. Stroke 2005; 36: 2116–2120.

Breteler MM. Vascular risk factors for Alzheimer’s disease: an epidemiologic perspective. Neurobiol Aging 2000; 21: 153–160.

Launer LJ. Demonstrating the case that AD is a vascular disease: epidemiologic evidence. Ageing Res Rev 2002; 1: 61–77.

Yarchoan M, Xie SX, Kling MA, et al. Cerebrovascular atherosclerosis correlates with Alzheimer pathology in neurodegenerative dementias. Brain 2012; 135(12): 3749–3756.

Kling MA, Trojanowski JQ, Wolk DA, et al. Vascular disease and dementias: paradigm shifts to drive research in new directions. Alzheimers Dement 2013; 9(1): 76–92.

Kuller LH, Lopez OL, Newman A, et al. Risk factors for dementia in the cardiovascular health cognition study. Neuroepidemiology 2013; 22: 13–22.

Söderlund H, Nilsson LG, Berger K, et al. Cerebral changes on MRI and cognitive function: the CASCADE study. Neurobiol Aging 2006; 27: 16–23.

Snowdon DA, Greiner LH, Mortimer JA, et al. Brain infarction and the clinical expression of Alzheimer disease. The Nun Study. JAMA 1997; 277: 813–817.

Esiri MM, Nagy Z, Smith MZ, et al. Cerebrovascular disease and threshold for dementia in the early stages of Alzheimer’s disease. Lancet 1999; 354: 919–920.

Scheltens P, Barkhof F, Valk J, et al. White matter lesions on magnetic resonance imaging in clinically diagnosed Alzheimer’s disease. Evidence for heterogeneity. Brain 1992; 115: 735–748.

Scheltens P, Pasquier F, Weerts JG, et al. Qualitative assessment of cerebral atrophy on MRI: inter- and intra-observer reproducibility in dementia and normal aging. Eur Neurol 1997; 37: 95-99.

Davies RR, Scahill VL, Graham, et al. Development of an MRI rating scale for multiple brain regions: comparison with volumetrics and with voxel-based morphometry. Neuroradiology 2009; 51: 491-503.

Fazekas F, Chawluk JB, Alavi A, et al. MR signal abnormalities at 1.5 T in Alzheimer’s dementia and normal aging. AJR Am J Roentgenol 1987; 149: 351-356.

Koedam EL, Lehmann M, van der Flier WM, et al. Visual assessment of posterior atrophy development of a MRI rating scale. Eur Radiol 2011; 21: 2618-2625.

Krainik A, Moreaud O, Cantin S, et al. Morphological subroups in Alzheimer’s disease based on the precuneus atrophy. ΕCR 2011. Poster C-2190. DOI: 10.1594/ecr2011/C-2190.

DelliPizzi S, Franciotti R, Bubbico G, et al. Atrophy of hippocampal subfields and adjacent extrahippocampal structures in dementia with Lewy bodies and Alzheimer’s disease. Neurobiol Aging 2016; 40: 103-109.

Yushkevich PA, Pluta JB, Wang H, et al. Automated volumetry and regional thickness analysis of hippocampal subfields and medial temporal cortical structures in mild cognitive impairment. Hum Brain Mapp 2015; 36(1): 258-287.

Ferreira D, Cavallin L, Larsson EM, et al. Add Neuro Med consortium and the Alzheimer’s Disease. Neuroimaging Initiative. Practical cut-offs for visual rating scales of medial temporal, frontal and posterior atrophy in Alzheimer’s disease and mild cognitive impairment. J Intern Med 2015; 278: 277-290.

Harper L, Barkhof F, Fox NC, et al. Using visual rating to diagnose dementia: a critical evaluation of MRI atrophy scales. J Neurol Neurosurg Psychiatry 2015; 86(11): 1225-1233.

Galton CJ, Gomez-Anson B, Antoun N, et al. Temporal lobe rating scale: application to Alzheimer’s disease and frontotemporal dementia. J Neurol Neurosurg Psychiatry 2001; (2): 165-173.

Scheltens P, Leys D, Barkhof F, et al. Atrophy of medial temporal lobes on MRI in “probable” Alzheimer’s disease and normal ageing: diagnostic value and neuropsychological correlates. J Neurol Neurosurg Psychiatry 1992; 55: 967-972.

Koikkalainen J, Rhodius-Meester H, Tolonen A, et al. Differential diagnosis of neurodegenerative diseases using structural MRI data. Neuroimage Clin 2016; 11: 435-449.

Visser P, Verhey F, Hofman P, et al. Medial temporal lobe atrophy predicts Alzheimer’s disease in patients with minor cognitive impairment. J Neurol Neurosurg Psychiatry 2002; 72(4): 491-497.

Papageorgiou SG, Beratis IN, Horvath J, et al. Amnesia in frontotemporal dementia: shedding light on the Geneva historical data. J Neurol 2016; 263: 657-664.

Irish M, Piguet O, Hodges JR, et al. Common and unique gray matter correlates of episodic memory dysfunction in fronto-temporal dementia and Alzheimer’s disease. Hum Brain Mapp 2014; 35(4): 1422-1435.

Tan RH, Pok K, Wong S, et al. The pathogenesis of cingulate atrophy in behavioral variant frontotemporal dementia and Alzheimer’s disease. Acta Neuropathol Commun 2013; 1: 30.

Harper L, Barkhof F, Scheltens P, et al. An algorithmic approach to structural imaging in dementia. J Neurol Neurosurg Psychiatry 2014; 85: 692-698.

O’Brien JT, Wiseman R, Burton EJ, et al. Cognitive associations of subcortical white matter lesions in older people. Ann N Y Acad Sci 2002; 977: 436–444.

De Groot JC, de Leeuw FE, Oudkerk M, et al. Cerebral white matter lesions and cognitive function: the Rotterdam Scan Study. Ann Neurol 2002; 47: 145–151.

DOI: http://dx.doi.org/10.36162/hjr.v5i1.292


  • There are currently no refbacks.