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Perfusion MRI analyses tissues’ temporal responses 
to the inflowing exogenous contrast agents or labe-
led blood to characterize the hemodynamics proper-
ties of the tissues. Perfusion MRI techniques are sen-
sitive to microvasculature, thus, can be a robust tool 
to study brain tumors where the neovascularization 
is a hallmark of malignancy. The derived indices can 
be helpful in many aspects, including tumor grad-
ing, prediction of malignant transformation, patient 
management planning, and monitoring treatment 
responses. A major MRI perfusion approach using 
exogenous contrast agent is dynamic susceptibility 

contrast MRI (DSC-MRI). With the increasing need 
for perfusion MR imaging in clinical practice, it is 
important to understand the basic principles of the 
technique and its meaningful clinical applications. 
In this review, we discuss the most commonly used 
perfusion sequence, DSC-MRI. We provide a compre-
hensive overview of the principles for clinical neu-
roradiologists and neuroscientists to help improve 
their understanding of the underlying theory and 
the technical aspects of DSC-MRI, as well as image 
acquisition, image analysis, its possible pitfalls, and 
its clinical applications in tumor imaging.
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1. Introduction
Cerebral perfusion refers to the steady state delivery 
of oxygen and nutrients via blood to brain tissue per 
unit volume or mass. It is typically measured in millilit-
ers per 100 grams of tissue per minute (ml/100g/min)

[1-3]. Normal perfusion requires sufficient cardiac out-
put and healthy blood vessels [1]. The term ‘perfusion’ 
strictly means -in physiology- blood flow at the capil-
lary level [1]. However, it is often broadly applied to in-
clude other hemodynamic parameters, such as cerebral 
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blood volume (CBV), mean transit time (MTT), and vascu-
lar permeability parameters such as the forward trans-
fer constant (Ktrans) and the fractional volume of the ex-
travascular extracellular space (ve) [4]. Blood flow along 
major arteries and veins is not “perfusion” and measured 
in unit mass or volume per unit time, e.g. mL/s [5]. Brain 
parenchyma survival depends on an adequate blood sup-
ply, and thus hypoperfusion (such as in stroke) and hy-
perperfusion (such as in epilepsy and tumors) threatens 
the viability of the brain tissue. Perfusion indices have 
been used as imaging biomarkers in many diseases, such 
as stroke [6-11], tumors [12-18], epilepsy [19-22], neu-
roinflammatory and neurodegenerative disease [23-28].

DSC-MRI benefits from signal changes, which accom-
pany the passage of a gadolinium-based contrast agent 
(GBCA) through the cerebrovascular system, to quanti-
fy perfusion. It is the most often used technique to as-
sess noninvasively the tumor vascular density which 
is directly related to the tumor grade in glioma. It has 
shown great potential in brain tumor imaging. The de-
rived parameters are relative CBV, CBF and MTT (rCBV, 
rCBF and MTT). rCBV, in particular, is the most reliable 
parameter for characterization of brain tumors, MTT is 
the least [29]. DSC-MRI has become increasingly impor-
tant not only in diagnosis and management planning of 
glioma but also in assessing treatment response [30-33]. 
The increased use of DSC-MRI necessitates having a solid 
understanding of the techniques.  In this review, we dis-

cuss DSC-MRI methods including physical principles and 
quantification techniques, protocols and parameters, 
pitfalls and limitations, clinical applications in brain tu-
mors and future endeavors in this field. 

2. Fundamental Concepts
DSC-MRI acquisition: DSC-MRI relies on a bolus injec-
tion of a paramagnetic contrast agent coupled with rap-
id measurement of T2/T2* signal change during the first 
passage of the bolus through the cerebral circulation 
[34,35]. In DSC-MRI, images are acquired before, during, 
and after contrast agent injection while the signal in-
tensity changes are measured over time. The detailed 
physical principles and DSC-MRI data quantification are 
beyond the scope of this review and can be found in [36-
40]. Here, we are only going to emphasize the most im-
portant concepts.

Origin of Signal: The intravascular compartmental-
ization of GBCA produces a local magnetic field inho-
mogeneity that disturbs the nearby spins and induces a 
transient decrease in signal intensity called “Susceptibil-
ity Contrast”. The susceptibility contrast is most marked 
on T2* (gradient echo) and less on T2 (spin echo)-weight-
ed sequences. The drop in the signal is proportional to 
the tissue vascularity and the contrast agent concentra-
tion. The signal intensity in DSC-MRI has arbitrary units 
and reflects the hemodynamics of the contrast agent 
within a tissue voxel.

Fig. 1: The graph demonstrates the changes in signal intensity over time after a bolus of contrast agent injection
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Signal intensity-time curve: The changes in MR sig-
nal intensity over time are divided into three stages: 
The baseline, the first passage of the bolus, and the re-
circulation period [41], Fig. 1. Firstly, the baseline is the 
period where images are acquired before the arrival of 
the contrast agent bolus, the signal intensity is, there-
fore, assumed to be constant. Secondly, GBCA injec-
tion is followed by a period of a transient rapid signal 
drop called the first passage of the bolus, the maximum 
signal drop corresponds to the time of maximum con-
trast concentration. After reaching the minimum signal 
(or maximum contrast concentration), signal intensity 
starts to return to the baseline value. The first passage 
is often partially overlapped with the recirculation peri-
od, which causes a smaller and slower secondary signal 
drop. The recirculation period results from re-entering 
of the contrast agent. Finally, tissue signal theoretical-
ly recovers to the baseline. 

Conversion of signal intensity to concentration: The 
signal change over time S(t) is converted into ΔR2*(t). 
ΔR2*, which is the transversal relaxation rate, is assumed 
to be linearly proportional to contrast concentration, 
equation [1]:

  (Equation 1)

   (Equation 2)
                                                                                        
               (Equation 3)

R2* and T2* are the transversal relaxation rate and 
time, C(t) is the contrast concentration at time t, S(t) and 
S0 are the signal intensity at time t and the baseline re-
spectively, TE is the echo time of the MR sequence, k is 
a proportionality constant that depends on the contrast 
agent, pulse sequence, field strength, blood volume and 
vascular morphology. Therefore, if we assume negligible 
T1 effect during the first bolus passage, C(t) can be calcu-
lated from the signal intensity changes with respect to 
its baseline value, equation [3]. 

CBV quantification: DSC-MRI quantification is based 
on the theory of tracer kinetics for intravascular non-dif-
fusible tracers [42,43] i.e. GBCA remains intravascular 
during its first passage through the brain [41,44]. It as-
sumes that the dominant contrast is T2 weighted and 
T1 effect is negligible. It also assumes that GBCA tissue 
concentration is linearly proportional to the rate of the 

signal change. Based on these assumptions and by ap-
plying traditional tracer kinetic models for intravascu-
lar agents, CBV can be obtained by integrating the area 
under the concentration-time curve, equation [4]. How-
ever, absolute perfusion measurements require the de-
termination of the arterial input function (AIF) and sub-
sequent deconvolution analysis.

  (Equation 4)

Where ρ is the tissue density, H is the haematocrit level 
and Hf=(1-Hartery)/(1-Hcapillary ). Ct(t) and Ca(t) represents 
the concentration of the contrast in the tissue and a 
large artery at time t.

Arterial input function (AIF): AIF is the concen-
tration of GBCA passing through an artery feeding the 
brain or a tissue of interest. AIF is used to calibrate the 
perfusion measurements by defining the shape of the 
actual bolus before entering the cerebral microvascula-
ture [45]. The AIF is typically measured on voxels found 
within, or near an artery as an approximately linear re-
lationship between the tissue relaxivity and GBCA con-
centration is found in a voxel adjacent but not within 
the artery [46]. 

By applying the indicator dilution theory, the tissue 
concentration, Ct(t), can be modeled as the mathematical 
convolution between AIF (Ca(t)) and the fraction of the 
bolus of contrast agent remaining in the tissue at time 
t following the arrival of an ideal instantaneous bolus, 
known as the tissue residue function, R(t): 

(Equation 5)

Where α is the proportionality constant (α=ρ/Hf), the 
symbol  represents convolution, R(t-τ) is the tissue res-
idue function at time t, following the ideal bolus injec-
tion at time τ [41]. 

Deconvolution analysis: The deconvolution is a math-
ematical step by which the contribution of the AIF is re-
moved from the tissue to estimate the residue function. 
The residue function (R) is the fraction of tracer still 
present in the tissue after an ideal instantaneous bolus 
injection into the tissue-feeding vessel at the entrance 
of the capillary network at time 0. CBF quantification re-
quires deconvolution of the AIF (Ca(t)) and the measured 
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contrast agent concentration-time curve Ct(t), as shown 
in equation [6]. The most commonly used method is the 
singular value decomposition (SVD) [47]. 

 (Equation 6)                
              
Where  represents the deconvolution operator. 
Mean transit time MTT, which represents the average 

time for a molecule of contrast agent to pass through 
the tissue vasculature following an ideal bolus injection, 
can be calculated using the central volume theorem as 36.

    (Equation 7)                

Where h(τ) is the transport function at time τ, which 
is defined as the impulse response function of the parti-
cles exiting the tissue [48].

The scaling factor of the residue function is equal to 
CBF while CBV is the area under the residue function 
and MTT is calculated as the ratio of CBV/CBF [4]. The 
abbreviations rCBV, rCBF, and rMTT refer to “region-
al” or “relative” CBV, CBF, and MTT, the later indicat-
ing relative and not absolute measurements of these pa-
rameters [49].

Absolute versus relative perfusion metrics: Relative 
CBV (rCBV) generally, refers to a qualitative measure ob-
tained without consideration of the AIF. However, per-
fusion measurements in its absolute units (ml/100g/min 
for CBF and ml/100g/min for CBV) are nearly impossi-
ble in a clinical setting.  Absolute quantification requires 
the knowledge of proportionality constants that inter-
vene in the conversion of the signal into concentration 
time curves. These constants depend on multiple factors 
such as the MRI scanner, the contrast agent and the ac-
quisition parameters as well as the exact hematocrit lev-
el and tissue density, which may vary in health and dis-
ease. Furthermore, absolute quantification is hampered 
by partial volume effects and other problems related to 
AIF selection. Thus, perfusion measurements always re-
main relative to the methods used. rCBV ratio, on the 
other hand, is a measurement obtained relative to the 
contralateral normal brain, typically, the normal appear-
ing white matter, it is sometimes called normalized rCBV 
(nrCBV).

3. DSC-MRI Protocol
DSC-MRI Sequence: DSC-MRI is based on a fast mul-

ti-slice imaging sequence, with two-dimensional (2D) or 
three-dimensional (3D) dynamic acquisition with suffi-
cient temporal resolution [50-53] to catch the transient 
MR signal drop which lasts approximately for 10 seconds 
with sufficient temporal resolution [50-53]. Echo planar 
imaging (EPI) is the imaging technique of choice with 
either T2*-weighted gradient-echo (GE) or T2-weight-
ed spin-echo (SE) pulse sequences. EPI techniques pro-
vide whole-brain coverage with reasonable signal-to-
noise ratios (SNRs) [54]. GE-EPI is often used, clinically, 
because it is faster. Thus, it gives better coverage of the 
brain with the same given repetition time because it has 
shorter TE than SE-EPI. Moreover, it is more sensitive to 
magnetic susceptibility effects since it does not involve 
the use of a refocusing pulse. Typically the GBCA dose 
used is only half of that used for SE-EPI, and also, it ex-
hibits higher SNR. GE-EPI images are sensitive to a wide 
range of vessel sizes with greater sensitivity to macro-
vasculature. SE-EPI has the inherent sensitivity to per-
fusion at microvascular level, with vessel size less than 
8 μm [55,56].

Echo time (TE): For a GE sequence, the optimal signal 
drop is achieved by setting the MR TE equal to T2* of the 
tissue [57]. Long TEs decreases T1-weighting but, short-
er TEs provide higher SNR [58]. At 1.5T, the optimal TE 
is between 40 and 60 ms, whereas between 20 and 35 at 
3T [57].

The repetition time (TR) 
Adequate temporal resolution is recommended to char-
acterize the transient signal drop in the first pass of the 
contrast bolus. However, shorter TRs increase T1-weight-
ing. A TR no longer than 1.5 s is recommended [59]. 

Flip angle(FA): Smaller flip angles decrease the un-
wanted T1 effect as well as reduce the baseline signal.  
Larger angles, although increase SNR, are undesirable in 
combination with short TRs (<1.5 s) because of the T1 ef-
fect [60]. The current recommendation is using a flip an-
gle of 60-90o at 1.5T and 60-70o at 3T [54,61].

Adequate acquisition duration is necessary for suffi-
cient characterization of the contrast bolus over time. 
Short acquisition time could lead to CBF and CBV er-
rors of up to 50% especially in the context of cerebral 
ischemia since the bolus is commonly delayed and dis-
persed [62]. The whole acquisition time is usually less 
than 2 minutes (90-120s).  It is recommended to start 
at least 10s before the injection of the contrast agent to 
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achieve a steady state in the baseline images. 
Contrast Agents: Gadolinium-based contrast agents 

are used off-label for brain PWI as they do not have spe-
cific U.S. Food and Drug Administration (FDA) approval 
for this purpose [63]. This contrast agent results in short-
ening of T1 and T2 relaxation time. If the assumption of 
intact BBB is preserved, the T1 effect  (positive enhance-
ment) only remains intravascular and it is negligible [64]
in comparison to T2 or T2* susceptibility effect (nega-
tive enhancement). Several studies have used gadolini-
um chelates at different doses and from various manu-
facturers [65,66]. A dose of 0.1mmol/kg body weight of 
gadobutrol or gadobenate dimeglumine is adequate. The 
contrast agent is administered intravenously at a high 
rate (5ml/s) to avoid bolus dispersion. A power injector 

is typically used [66,67]. Slow injection rate (2.5 ml/s) can 
create bolus dispersion and underestimation of the AIF. 
However, fast rate (up to 10 ml/s) does not substantially 
add benefit with regards to the bolus shape [68]. More-
over, injection rates higher than 5 ml/s using a small 
gauge access can cause significant errors [39]. To opti-
mize the injection technique, it is recommended to in-
ject in the right arm then flush with at least 25 mL saline 
at the same administered rate as the contrast agent to 
push the bolus toward the heart. This will assure bolus 
coherence, and also, reduce the risk of substantial back-
flow into the jugular vein [69]. Table 1 highlights DSC-
MRI parameters, optimized for GE-EPI sequence. 

Post-processing and image analysis
Software packages dedicated to the analysis of DSC-im-
aging sequences are readily available and included in 
manufacturers’ workstations. The continuous improve-
ment of these computer programs offers a simpler, more 
rapid and robust analysis. DSC-MRI data can be analyz-
ed by two methods: 
1. Curve fitting based, also known as semi-quantita-

tive method.
2. Deconvolution based method, also known as quan-

titative methods.
Both methods share the same initial steps; obtaining 

curves of signal change over time; estimating the base-
line signal from the initial time-points before contrast 
injection (it is preferable to exclude the first two vol-
umes since the steady state signal might not be reached); 
calculation of the concentration-time curve. To obtain 
quantitative parameters, further tracer kinetic modeling 
is needed. It is useful to examine the EPI source images 
for artifacts that may affect the perfusion maps. Inspec-
tion of the signal intensity-time curve is also advisable 
to have an idea about which whether T1 or T2* star ef-
fect is dominant.

Semi-quantitative Methods: These methods rely 
on the tissue concentration, which depends on the lo-
cal shape of the AIF and the so-called summary parame-
ters can be calculated from the concentration-time curve, 
see Fig. 2. The bolus arrival time (BAT) mainly reflects 
collateral circulation. The time to peak (TTP), can re-
flect tissue transit time, collateral circulation and cardi-
ac ejection fraction, full width at half maximum (FWHM) 
depends on tissue MTT [37]. The area under the peak 
(AUP) is proportional to rCBV and (the peak) is the max-

 Table 1: DSC-MRI parameters table

Sequence GE-EPI (2D multislice)  
rather than SE-EPI

TR/temporal 
resolution

1500 msec (range  
1,000-1,500 msec)

TE 35-45 msec at 1.5T and  
25-30 msec at 3T 

Flip angle 60-70°

FOV 20x20 cm (range 20x20  
to 24x24 cm) 

Matrix 128x128 (range 64x64  
to 256x56)

Slice thickness 5 mm (range 3-5 mm)

 Number of slices 11 (range 5-20)

 Interslice gap 1 mm or interleaved  
(range 0 to 10 mm)

Volume duration 1 TR

Scan duration <2 min

Temporal coverage 
(number of volumes) 40-120 total time points

IV catheter gauge 20 gauge (range 22  
to 14 gauge)

1st dose (preload) 0.025-0.1 mmol/kg, 5-10 min 
before the dynamin imaging

2nd dose (imaging 
dose)

0.1 mmol/kg, 30-50 time 
points after imaging begins

GBCA injection rate 5 ml/s

Saline flush 25 ml (range 20-30 ml)  
at same rate of GBCA

Dynamic Susceptibility Contrast MRI in Gliomas, p. 56-78
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imum GBCA concentration, (Fig. 2). Summary parame-
ters are easy to calculate, do not require identification 
of the AIF and less demanding in the SNR and tempo-
ral resolution. However, they have major disadvantag-
es, they are non-physiological and depend on the local 
shape of the AIF of the specific scan and do not account 
for the inter-individual differences in macrovascular 
structure, such as arterial status, cardiac output, as well 
as injection technique and contrast agent leakage [70,71]. 
They also derived from the signal intensity, which has no 
physical units and can be influenced by imaging acqui-
sition techniques. Thus, this method makes the compar-
ison between scans obtained at different sites difficult. 
To improve the summary parameters, data fitting most 
commonly by γ-variate function and baseline subtrac-
tion methods can be applied to the concentration-time 
curve to correct for recirculation and contrast leakage 
effects [35,72]. rCBV map can be then estimated from the 
area under the fitted curve whereas rCBF and MTT maps 
could also be less accurately estimated. Therefore, when 
the semi-qualitative analysis is considered, it is better to 
use summary parameters rather than the use of physio-
logical perfusion parameters.

Deconvolution-based method: The deconvolution-
al method requires the identification of AIF to produce 
so called the parametric (quantitative) maps. The maps 
then could be analyzed by “hot-spots” or histogram 

analysis. Although the quantitative analysis is more dif-
ficult to obtain, it is more accurate and powerful than 
semi-qualitative analysis because it is relatively inde-
pendent of magnetic strength, scanner manufacturer, 
contrast injection technique, thus enables valid com-
parisons between scanners, subjects and in longitudinal 
studies. Furthermore, the derived parameters CBV, CBF 
and MTT are more reliable as they are physiological.

Hot-spot analysis method: Regional calculation of 
perfusion parameters in tumors is commonly performed 
by manual placement of region of interests (ROIs) around 
a portion, or the entire lesion [73]. Care should be taken 
to avoid large extra- and intratumoral vessels when plac-
ing the ROIs [74]. The most acceptable method is to draw 
several ROIs in the hot-spots and then to choose the ROI 
of the highest mean [75]. The parameters from the hu-
moral ROIs are typically normalized to a reference ROI 
in the normal appearing white matter. 

Histogram analysis: Histograms are generated from 
regions of interest drawn around the whole lesion. The 
area under the histogram curve is usually normalized to 
the value of one and classified into a predefined number 
of bins. Values from the ROI are plotted against the rela-
tive frequency (Fig. 3). The following histogram metrics 
can be obtained: mean value; standard deviation; peak 
value or position; and peak height. Histograms can give 
a global estimate when considering the heterogeneity of 

Fig. 2: Diagram of a concentration-time curve showing the sum-
mary parameters including bolus arrival time (BAT), time to peak 
(TTP), full-width at half-maximum concentration (FWHM), max-
imum peak concentration (Peak), and area under the peak (AUP)

Fig. 3: Histogram parameters that are used in DSC-MRI

Dynamic Susceptibility Contrast MRI in Gliomas, p. 56-78
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the tissue of interest; however, this can lead to the loss 
of the spatial specificity [76]. Histogram methods have 
been proven to have greater interobserver agreement 
compared with the localized hot-spot, and similar diag-
nostic accuracy [77,78]. Several studies have demonstrat-
ed the diagnostic value of histogram indices of perfusion 
parameters in brain tumor imaging [79-83]. 

4. Technical considerations
Arterial input function: Correct measurement of AIF, 
which can be challenging, is crucial for perfusion quan-
tification to eliminate the effect of cardiac output and 
injection variability. Measurement of the AIF is subject 
to partial volume effect due to the relatively low spa-
tial resolution of EPI acquisitions. The AIF is typically 
measured within or better in the immediate vicinity of 
a vessel; it is preferred to be perpendicular to the main 
magnetic field, e.g. in the middle cerebral artery. Sever-
al studies have shown that measuring AIF near but com-
pletely outside the middle cerebral artery gives a good 
estimate of the shape [46,84]. The most common prob-
lems are the flow-related artifacts and partial volume ef-
fects. A perfect AIF is characterized by the early time of 
arrival, high amplitude and small full width at half max-
imum [4]. An incorrect AIF leads to a systematic error in 
the quantification, and the wrong shape causes errone-
ous result after the deconvolution analysis [46]. Sever-
al automatic methods have been developed to estimate 
the AIF [85-87], which are less operator-dependent and 
more reproducible.

Arterial delay and dispersion: One AIF is used as an 

input function for the whole brain to quantify perfusion. 
In healthy vessels, dispersion of the AIF in macrovascu-
lar structures is negligible compared to the dispersion at 
microvascular level. Any changes in the AIF, e.g. vascular 
occlusion or narrowing, before the bolus reaches the tis-
sue of interest will be propagated to the residue function 
and will be interpreted as microvascular dispersion lead-
ing to underestimation of the perfusion measurements 
[67]. The only way to differentiate between macro- and 
microvascularity dispersion is to measure the AIF local-
ly, as near as possible to the tissue of interest. The main 
reservation of the local AIF however, is that the vessels 
are small, and there is, a higher chance of partial vol-
ume effect [88]. 

T1 effects and blood-brain barrier (BBB) leakage: 
The gadolinium contrast agent not only affects trans-
verse relaxation rate but also affects the longitudinal re-
laxation rate, leading to T1 shortening. DSC-MRI quantifi-
cation models are typically based on the assumption that 
contrast agent remains within the vessels. In the presence 
of a normal BBB, the recorded signal is largely T2*-weight-
ed and the influence of T1 effects is negligible [60]. How-
ever, When the BBB is damaged, contrast leaks into the 
extracellular space, leading to a reduction in the T2* re-
laxation and a shortening of T1 in the extravascular tis-
sue. These two effects can significantly reduce the signal 
loss caused by susceptibility effects, and lead to quantifi-
cation errors in CBF and CBV [89]. The T1 effect could be 
minimized by using a flip angle significantly smaller than 
the Ernst-angle or by using dual or multiple echo sequenc-
es. Many authors have presented algorithms to correct 

Fig. 4. Illustration of the effect of BBB leakage on the signal-intensity time curves. A: The curve shows an intact BBB and negligible T1 ef-
fects. B: time curve with BBB leakage, the T1 effect dominates, leading to a lesser signal drop and an overshoot after the bolus passes. C: 
Time curve with BBB leakage, the T2* effect dominates (e.g., when a double-echo sequence is used). In B and C quantification errors will 
occur if the distortions to the time curves are not accounted for in the DSC-MRI model

Dynamic Susceptibility Contrast MRI in Gliomas, p. 56-78
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for the contrast agent leakage and thus minimization of 
the T1 effect [44,90,91]. Nevertheless, these algorithms re-
quire tracer kinetic modeling and an appropriate pulse se-
quence. Another approach to minimize T1 leakage effect is 
to give a preload consisting of a small amount of the con-
trast agent [92]. This preload dose will reduce the concen-
tration gradients between the vessels and the tissue that 
drive the leakage and thus lower the T1 value of the ex-
travascular compartment. Specifically, it is assumed that 

the T1 relaxation largely saturated, and no further short-
ening of T1 will occur.

When the T1 effect is removed, it is quite often that 
the measured perfusion may be over-estimated due to 
the so- called T2* effect or T2* leakage (Fig. 4). Several 
post-processing methods have been proposed to correct 
for T1- and T2*-dominated leakage effects [93,94]. Paul-
son and Schmainda suggested in their study, performed 
on 22 high-grade gliomas, that a dual-echo sequence or 

Table 2. Techniques for T1 leakage correction

Category Technique Mechanism References

Image 
acquisition

long TE, small flip 
angle, double-echo 
T2*-weighted

Minimise T1 effect and increase T2 
weighting.

Knopp et al. 98, 
Cha et al.72, Vonken et al.30, 
Uematsu et al.99

Contrast agent Preload doses

The original tissue T1 is decreased af-
ter the preload, leading to minimiza-
tion of the changes in T1 relaxation, 
which might occur during the first-
pass of the contrast agent.

Donahue et al.100, 
Schmainda et al.101, 
Simonsen et al.102, 
Boxerman et al.96

Intravascular agents 
(eg, ferumoxytol)

Ferumoxytol has large-sized  iron na-
noparticlesand it acts as a blood pool 
agent, which does not cross the dis-
rupted BBB in the short term.

Gahramanov et al.103

Post-processing Linear fit and leakage 
correction modelling

MTT-insensitive: assumes that MTT 
is the same in normal and abnor-
mal tissues. The algorithm is based 
on the linear fit of the obtained curve 
to constant functions derived from 
non-enhancing brain tissues. Howev-
er, it may give errors in tumors with 
marked leakage as MTT is usually 
prolonged.

Schmainda et al.101, 
Boxerman et al.44

MTT-sensitive: accounts for differenc-
es in tissue MTT by estimating con-
trast leakage from the tissue residue 
function.  

Quarles et al.97, 
Bjornerud et al.93

γ-variate fit

A non-linear gamma-variate function 
is fitted to the signal intensity-time. 
It approximates the curve shape that 
would have been obtained without 
leakage or recirculation.

Rosen et al.35, Benner et al.104 
Lee et al.105, Law et al.106

Limited integration
Use only the integration from the 
beginning of the bolus to the peak 
curve before T1 effects become more 
evident.

Wong et al.107

Baseline subtraction

The baseline values are calculated 
from a line between the beginning 
and end of the first pass then sub-
tracted from the measurements ob-
tained during the passage of the bolus 
through the tissue.

Cha et al.108, Wetzel et al.75 
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a preload of contrast, combined with a post-processing 
correction of T2*/T2 effects, may provide the most ac-
curate approach for measuring CBV in tumors [95]. T1 
leakage correction can be classified into three schemes 
explained in Table 2 [96]. A note should be made here 
that despite the substantial errors in uncorrected CBV 
caused by BBB leakage, errors from uncorrected CBF are 
much less severe [97].

Limitations: DSC-MRI is a susceptibility-weighted 

technique that is sensitive to any strong magnetic field 
inhomogeneity, which can be caused by calcium, blood 
products, melanin, metal depositions or at the brain-
bone-air interface. Macroscopic susceptibility may be 
reduced by increasing the spatial resolution, but this 
would be a trade off on the expense of the coverage area 
and signal-to-noise ratio. Another disadvantage of the 
DSC-MRI technique is the requirement for injection of 
gadolinium, which can be limited by concerns related to 
toxicity [109,110]. There are also limitations in the CBV 
calculation in the context of damaged BBB unless appro-
priate measures are taken. Finally, a major limitation of 
DSC-MRI is the lack of technical standardization in acqui-
sition and post-processing methods. Perfusion measure-
ments tend to be relative, because their quantification is 
dependent on the methods, such as the AIF selection, de-
convolution methods, and the interplay of T1 and T2* ef-
fects adds more complexity to the measurements [54]. 

5. Clinical Applications 
DSC-MRI has shown great potential in brain tumor im-
aging. The derived parameters are relative CBV, CBF and 
MTT (rCBV, rCBF and MTT). rCBV, in particular, is the 
most reliable parameter for characterization of brain tu-
mors, MTT is the least [29].

Primary diagnosis and grading
Accurate glioma grading is crucial for patient manage-
ment and outcome. The current standard method of grad-
ing is histological assessment, but this has limitations. 
Firstly, it is restricted due to the invasive nature of the 
procedure. Secondly, gliomas are inherently heterogene-
ous and sampling only one region may lead to errors and 
underestimation of glioma grade in 30% of cases [111]. 
Thirdly, besides the spatial heterogeneity of gliomas, an-
giogenesis demonstrates a considerable temporal heter-
ogeneity, and therefore tumor angiogenesis, and grade 
may significantly change with time, rendering sampling 
at one-time point potentially ineffective. Finally, for reli-
able assessment of the humoral changes in glioma, it is in-
convenient to repeat an invasive procedure frequently to 
assess a process that differs in time and space, especially 
in the setting of anti-angiogenic therapies. These limita-
tions have encouraged the development of imaging-based 
grading methods, and the assessment of angiogenesis that 
can be measured and quantified by perfusion MRI plays a 
pivotal role in this [112,113].

Fig. 6: Right fronto-parietal GBM. Pre and post contrast T1WI 
showed subacute hemorrhage and contrast enhancement respec-
tively. The mass is hyperintense in T2WI with late subacute hem-
orrhagic changes. rCBV map demonstrates high perfusion

Fig. 5: Non-enhanced mass in the left inferior frontal gyrus, with 
decreased blood volume. Pathology demonstrated astrocytoma 
WHO grade II
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Table 3:  Listed values of rCBV and rCBF for high- and low-grade gliomas, HGG and LGG respectively. N, the num-
ber of cases; A, GBM only; B, anaplastic astrocytoma only; C, oligoastrocytoma; D, oligodendroglioma; E, 
nonenhancing astrocytomas

Authors N
HGG range (mean)  

or  
Mean ± SD

LGG range (mean)  
or  

Mean ± SD

  rCBV rCBF rCBV rCBF

Aronen et al.114 19 0.8-5.4 (3.6) 1.1-1.2 (1.1)

Sugahara et al.120 30 4.0-16.2 (7.3)A  0.6-2.01 (1.3)

0.98-7.9 (4.6)B   

Knop et al. 98 29 1.7-13.7 (5.07) 0.92-2.19 (1.44)

Shin et al.121 17 0.9-7.9 (4.9) 1.3–11.2 (4.8) 0.72-5.1 (2) 0.82-3.4 
(1.8)

Law et al.12 160 0.96-19.8 (5.18) 0.77-9.8 (2.1)

Hakyemez el al.122 33 2.4-18.6 (6.5) 1.4-8.7 (3.3) 0.97-2.88 (1.7) 0.8-2.2 
(1.16)

Bai et al.123 33 5.71 ± 1.63 1.67 ± 0.43

Law et al.106 73 6.05 ± 2.22A  1.75 ± 0.85

3.79 ± 1.48B    

Cho et al.124 29 3.02-16.7 (9.3) 1.30-5.07 (3.64)

Lee et al.105 22 4.90 ± 1.01A  1.75 ± 1.51  

3.97 ± 0.56B    

Saito et al.125 24 2.01 ± 0.68

4.60 ± 1.05C

6.17 ± 0.867D

Cha et al.115 25   0.48-1.3(0.2)

  1.3-9.2 (3.7)D

Arvinda126 51 2.8-12.9 (3.3) 0.29-3.14 (1.2)

Castanzo126 36 4.3 ± 1.2  2.0 ± 1.5

Morita et al.118 17 1.11 ± 0.13E  0.66 ± 0.17  

Gliomas can have marked histologic heterogeneity. 
Therefore, the overlap of rCBV measurements between 
different glioma grades is an important issue to recog-
nize. The rCBV maps of gliomas should not be interpret-
ed without conventional MR images, as these can provide 
other valuable information [72]. The maximum rCBV val-
ue correlates with the tumor’s mitotic activity and vas-
cularity, as initially observed by Aronen et al. [114]. Low-
grade astrocytomas tend to demonstrate little to no rCBV 
elevation compared to the contralateral normal appear-
ing brain [98] (Fig.5). Among high-grade gliomas, ana-

plastic astrocytomas tend to demonstrate lower relative 
CBV measurements in comparison to GBM [115] (Fig.6). 
Grading of non-enhancing astrocytomas can be challeng-
ing with conventional contrast-enhanced MRI as 20% of 
low-grade gliomas enhance, and approximately one-
third of non-enhancing gliomas are malignant [116,117]. 
Measurements of rCBV increase the accuracy of grading 
of non-enhancing astrocytomas [118].

Table 3 lists the results of previous PWI for glial tum-
ors. It is observed from the table that low and high-grade 
tumors have entirely different ranges of the mean rCBV. 
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High-grade gliomas range between 3.64 and 9.33, while 
all low-grade gliomas, excluding oligodendroglial tum-
ors, vary from 1.11 to 3.64. Many rCBV cut-off ratios have 
been proposed in the literature to differentiate between 
high and low-grade gliomas, with 1.75 rCBV ratios, prob-
ably, the most accepted one [12]. It has 95% sensitivity, 
57.5% specificity, 87% positive predictive value (PPV), 
and 79.3% negative predictive value (NPV). This cutoff 
point can also be used to predict patient outcome inde-
pendent from histopathology [119]. Table 4 lists some 
of the rCBV and rCBF threshold from previous studies. 

The increase of rCBV measurements over time can also 
detect malignant transformation of low-grade gliomas, 
which may occur up to 12 months before contrast en-
hancement becomes apparent on an enhanced T1 weight-
ed imaging [130]. Finally, grading of gliomas should be 
ideally obtained by histologic examination of the most 
malignant region in the specimen. A biopsy is usually 
guided by enhanced T1 weighted MRI or CT scans [131]. 
These demonstrate the areas of disrupted BBB, which are 
not necessarily the most biologically aggressive regions. 
CBV maps, in contrast, can demonstrate regions of high 
vascular densities which can be targeted for stereotactic 
biopsy and thus reduce the sampling error [13].

Besides tumor grade prediction and biopsy guiding, 
CBV measurements can be helpful in the differential di-
agnosis of brain tumors. For instance, it is frequently dif-
ficult to differentiate between lymphoma and high-grade 
glioma on conventional imaging; however, in DSC-MRI 
lymphomas have usually significantly lower rCBV values 
than malignant glial tumors [132]. Peritumoral infiltra-
tion, which is a distinct feature of gliomas can be lead to 
increased peritumoral rCBV values [133]. This may dif-
ferentiate glioma from several conditions such as sol-
itary metastases, which may have elevated rCBV val-
ues in the tumor tissue resembling high-grade gliomas. 
However, due to perilesional edema and lack of peritu-
moral infiltration, solitary metastases demonstrate low 
rCBV values in the surrounding edematous white mat-
ter [134]. Similarly, a tuberculoma can present with high 
lesional rCBV value and low peri-lesional value for the 
same reason [135]. Weber et al. [129] could differentiate 
between GBM and CNS lymphoma as GBM has a higher 
blood flow; specifically, they applied a threshold value of 
1.2 of DSC-derived rCBF, which provided 97% sensitivity; 
80% specificity; 94% PPV, and 89% NPV. They also could 
differentiate between GBM and metastasis by rCBF meas-
urement in peritumoral regions, which were found to be 

Table 4:  A list of rCBV and rCBF thresholds for distinguishing low- from high-grade gliomas. N, number of cases 
A, non-enhancing astrocytoma; B, GBM vs CNS lymphoma; C, GBM vs metastasis; D, GBM vs grade 3 glio-
ma; E, GBM vs grade 2 glioma; F, Grade 3 vs Grade 2 glioma

N Cut-off value Sensitivity Specificity PPV NPV

Shin et al.121 17 rCBV 2.93 90.9 83.3

rCBF 3.57 72.7 100

Law et al.12 160 rCBV 1.75 95 57.5 87 79.3

Lev et al.128 32 rCBV 1.5 100 69

Hakyemez et al.122 33 rCBV 2 100 90.9

rCBF 1.3

Arvind et al.126 51 rCBV 2.91 94.7 93.75 90 96.3

Young et al.83 92 rCBV 2.15 95.1 80.65

Morita et al.118 17 rCBV A 0.94 90.9 100

Antonio at al.13 21 rCBV A 1.2 80 100

Weber et al.129 97 rCBF B 1.2 97 80 94 89

 C 0.5 100 71 94 100

 D 1.4 97 50 84 86

 E 1.6 94 78 94 78

 F 1 92 33 65 75
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significantly higher in GBM compared with metastases; 
here, a threshold value of 0.5 demonstrated 100% sen-
sitivity; 71% specificity; 94% PPV; and 100% NPV [129].  

Increased vascularization does not necessarily indi-
cate malignancy [72]. Grade 2 oligodendroglioma is an 
example of a low-grade tumor with high rCBV [115,136]. 
The increased rCBV measurements in oligodendroglio-
ma are due to the increase in the expression of morpho-
logically delicate microvasculature [98]. Saito et al. [125] 
conducted a study on grade 2 and 3 astrocytic and oli-
godendroglial tumors; they have shown that rCBV val-
ues in oligodendroglial tumors are significantly higher 
than those in astrocytic tumors of a similar histological 
grade. The highest rCBV was found in oligodendroglio-
ma followed by oligoastrocytoma and astrocytoma (Fig. 
7 & 8). They also optimized a cut-off value of 3.0 that al-
lowed differentiation between the oligodendroglial and 
astrocytic groups at 100% sensitivity and 87.5% specific-
ity [125]. Whitemore et al. [137] have indicated that rCBV 
measurements may even predict oligodendroglial tumor 
subtype and grade. They found that grade 2 oligodendro-
glial tumor with the loss of heterozygosity (LOH) of chro-
mosomes 1p or 1p and 19q had significantly higher rCBV 
than tumors without LOH. LOH was not associated with 
significant rCBV differences in grade 3 oligodendrogli-
al tumors. Another low-grade tumor that demonstrates 
elevated rCBV is the nidus of a hemangioblastoma, a fea-
ture that helps it to differentiate it from pilocytic astro-
cytomas, which can appear similar to conventional im-
ages [124]. Tumefactive demyelinating lesions may cause 
a diagnostic dilemma by mimicking high-grade glial ne-
oplasms on conventional MR sequences. Differentiat-
ing between these two conditions is important since de-
myelinating lesions require no aggressive intervention 
such as surgery or even biopsy [138]. CBV measurements 
show the hypo-perfused nature of demyelinating lesions 
in contrast to high-grade neoplasms [108].

Management Planning and Monitoring: Areas 
of higher rCBV within a tumor may respond better to 
chemoradiation compared to areas with low rCBV be-
cause poor circulation diminishes exposure to the chem-
otherapeutic agent [139]. Bisdas et al. [140] had demon-
strated that rCBV values in gliomas -excluding tumors 
with oligodendroglial components- are more accurate 
predictors of recurrence and 1-year survival than his-
topathologic grading [140]. Furthermore, rCBV can help 
to identify low-grade gliomas that may progress rapid-

ly to malignant transformation [141]. A study conducted 
by Law et al. [142] concluded that patients with high- and 
low-grade gliomas with an rCBV above 1.75 had a sig-
nificantly more rapid time to progression than patients 
who had gliomas with an rCBV less than 1.75 [142]. rCBV 
measurements not only correlated well with time to pro-
gression but also with overall survival [143]. Those obser-
vations have an impact on management plan; low-grade 
gliomas with high rCBV values should be treated more 
aggressively while gliomas with low rCBV values could 
be treated more conservatively and might be monitored 
over time [144]. Thus, rCBV can act as a biomarker to ex-
amine the lesions’ malignant potential and stratify them 
for treatment decisions and prognosis [119]. It has also 
been suggested that pre-treatment rCBV measurements 
may also be used as a prognostic biomarker for oligoden-
drogliomas [145]. One study validated an rCBV thresh-
old value of 2.2 for three-year survival prognosis in pa-
tients with oligodendrogliomas demonstrating 89% and 
59% sensitivity and specificity, respectively [146].

Effect of glucocorticoids on DSC-MRI measure-
ments: Glucocorticoids are often used in patients with 
cerebral mass to treat symptoms associated with raised 
intracranial pressure. Dramatic improvement in symp-

Fig. 8: Non-enhanced mass in the left frontal lobe, with decreased 
blood volume. Pathology showed oligoastrocytoma WHO grade II 

Fig. 7: Non-enhanced mass in the right insula extending to the ba-
sal ganglia, rCBV map. Showed incresed blood volume in the stri-
atocapsular region. Histopathological diagnosis was oligodendro-
glioma who grade II
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toms has been observed up to few minutes after admin-
istration, which is believed to reflect the decrease in 
intracranial pressure [147,148]. The mechanism is not 
entirely understood. It has been hypothesized that the 
reduction in edema and intracranial pressure are caused 
by tightening of the blood-tumor barrier, changes in the 
water homeostasis in the brain, or as a result of a de-
crease in rCBV [149,150]. Decreased tumoral contrast en-
hancement is a known feature in conventional imaging 
after steroid therapy [151]. Quantitative permeability pa-
rameters are also decreased [151] except for meningi-
oma. Perfusion measurements before and after steroid 
treatment are variable in studies in the literature from 
unchanged to significant increased or decreased perfu-
sion. Among the reported results, a  trend for decreased 
rCBV/ MTT, whereas rCBF is increased or unchanged, 
has been observed [149,150,152-155]. Improved rCBF in 
the peritumoral edematous brain has also been demon-
strated and explained by the reduced peritumoral ede-
ma [150].

Tumor response versus treatment-related condi-
tions: The current widely used treatment strategy for 
high-grade tumors is maximal safe tumor resection fol-
lowed by radiotherapy and chemotherapy (usually te-
mozolomide) [156]. Up to 30% of treated patients show 
increased contrast enhancement in conventional im-
aging within the first few months, which subsequent-
ly diminishes without any additional therapy. This con-
dition is coined as pseudoprogression opposed to the 
actual tumor growth [157]. Pseudoprogression results 
from a transient increase in the permeability of the tu-
mor vessels due to radiation, a phenomenon that may 
be enhanced by temozolomide, and it is often associat-
ed with extensive edema [158,159]. A similar effect could 
be seen after reducing the steroid administration dose 
[160]. rCBV measurements can be helpful as real tumor 
progression has significant higher rCBV values than 
pseudoprogression [161-164].

Conventional chemotherapy targets mitotic activity of 
the tumor; however, it has poor performance in treat-
ing recurrent gliomas [165,166]. Several antiangiogenic 
drugs have been used in clinical trials as a new regimen 
for recurrent glioma. These drugs suppress angiogene-
sis by inhibiting VEGF (vascular endothelial growth fac-
tor) [15,167]. Both DSC and DCE can be used to assess 
the effectiveness of therapy. Furthermore, serial rCBV 
measurements correlate well with patients’ clinical sta-

tus [139,168-173]. Nonetheless, early after bevacizumab 
treatment, a commonly used antiangiogenic agent, de-
creased contrast enhancement is found due to normal-
ization of the leaky dilated blood vessels in the tumor 
[174]. Normalization of blood vessels includes tightening 
of the blood-tumor barrier and a decrease in vessel diam-
eter leading to improving CBF but decreasing CBV [175]. 
Decreased CBV values and vessels diameters were ob-
served as early as one day after treatment and persisted 
for 28 days [176]. These apparent early responses to an-
tiangiogenic therapy are mainly related to vascular nor-
malization rather than treatment response. For that rea-
son, the condition is called pseudoresponse and can be 
mistaken with true treatment response [174]. Vascular 
normalization was found to be reversible in patients un-
dergoing a “drug holiday” [176]. It is unclear how perfu-
sion can differentiate pseudoresponse from the true re-
sponse at this stage. 

Furthermore, differentiation between radiation necro-
sis and the recurrent tumor can be difficult with conven-
tional imaging. Both disease processes can cause diffuse 
white matter abnormalities either due to tumor infiltra-
tion or the demyelination process of radiation necrosis. 
Both also involve a degree of BBB disruption resulting in 
contrast enhancement on conventional imaging [177]. 
Differentiating between radiation necrosis and the re-
current tumor is important. As recurrent tumors can be 
managed by surgery, adjuvant chemotherapy or target-
ed high dose radiation therapy, radiation necrosis may 
be treated conservatively with steroids [72]. rCBV meas-
urements tend to be elevated in tumor recurrence due 
to increased vascularity, whereas, in radiation necrosis, 
they are usually lower than normal [177-179]. 

6. The present and future of DSC-MRI
Over the last decade, DSC-MRI underwent significant 
developments regarding acquisition techniques and 
post-processing methods, encouraged by emerging new 
treatment strategies of brain tumors and the urge to find 
reliable non-invasive methods for longitudinal assess-
ment of subtle regression, progression or therapy-in-
duced tissue injury. Perfusion DSC-MRI indices are wide-
ly used in clinical trials as biomarkers to assess treatment 
responses [79,146,177,180-186] and despite the proven 
benefits the technique is not widely used in clinical prac-
tice. The lack of agreed standards for data acquisition 
and post-processing techniques is a major challenge for 
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inter-site comparison and meta-analysis studies. Stand-
ardization of the technique is essential for clinically re-
producible measurements across multiple institutions 
[187-190].  Additionally, for DSC-MRI to be a relevant im-
aging endpoint for neuro-oncology clinical trials it needs 
validation, by such as test-retest methods to ensure that 
the radiographic response reflects therapeutic antitu-
mor effect. 

Methodology-wise, DSC-MRI post-processing tech-
niques are largely mature and will continue to benefit 
from hardware and software developments in the fu-
ture. However, much work is required to address the 
limitations above and to establish consensus-based rec-
ommendations for imaging protocols, data modeling, 
analysis, and interpretation. Considering the diversity 
of the applications of DSC-MRI in neuroimaging, such 
recommendations would not only ease the compari-
son across sites but also facilitate the clinical dissemi-
nation.  Moreover, DSC- MRI has to clearly prove that 
its impact on the patient management strategy is cru-

cial to the patient survival and the therapy response, 
whereas health economics issues also have to be en-
countered in the broad application of the technique in 
clinical routine. 

7. Conclusion 
DSC-MRI is a robust imaging technique for estimating 
brain perfusion and has marked advantages in the con-
text of brain neoplasms where contrast leakage and spa-
tial heterogeneity are commonly expected. This article 
introduced the reader to the basic principles of DSC-MRI 
and reviewed the clinical value of DSC-MRI in primary 
and secondary brain tumors in various settings. It is im-
portant to consider this useful imaging method as com-
plementary; a multiparametric approach is expected to 
provide a better evaluation of brain tumors and should 
be pursued in the clinical practice. R
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