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Abstract

Purpose: The proposed study aims to develop an MRI-
based radiomics analysis framework and investigate the 
feasibility of the calculated quantitative imaging features 
for differentiating low from high grade soft tissue sarco-
mas (STSs). 
Material and Methods: A total of 22 patients (9 low grade 
and 13 high grade) who were pathologically diagnosed 
with soft tissue sarcomas were recruited for the analy-
sis and corresponding T2-weighted MR images were ac-
quired for further post-processing. Tumour delineations 
were manually traced slice by slice concluding to whole 

tumour annotated volumes from all enrolled patients. 
A total of 1165 high-throughput patient-specific quanti-
tative imaging features were exported from each volume 
using radiomics and evaluated using random forest ma-
chine learning classifiers. The overall analysis framework 
was coupled with feature selection and oversampling 
techniques to address high-dimensionality dataset is-
sues and the unbalanced ratio between the two examined 
groups. Validation was performed using repeated nested 
cross-validation to eliminate overfitting problems and as-
sess the stability of the classification performance. 
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Introduction
Soft tissue sarcomas (STSs) are neoplasms arising 
from the mesoderm derived tissues such as muscle, 
fat and connective tissue, thus constituting a broad 
and heterogeneous category of space occupying le-
sions. More than 50 different STSs subtypes have 
been defined by the World Health Organisation 
(WHO), which are often associated with having dis-
tinct radiological phenotype, different tumour biol-
ogy and clinical outcome [1]. WHO divides tumours 
into benign, low grade (locally aggressive), interme-
diate grade (rarely metastasising) and malignant. 
Histopathologic type, grade and tumour size and 
depth are determinant factors for soft tumour stag-
ing and therefore provide significant prognostic in-
formation. Grading is based on the analysis of the de-
gree of cell differentiation, histopathologic subtype, 
mitotic activity and presence of necrosis. The most 
widely used systems for grading are the three tiered 
ones suggested by the French Federation of Cancer 
Centers Sarcoma Group (FNCLCC) [2] and the one 
proposed by the National Institutes of Health  (NIH) 
whereas the first system proposed by the American 
Joint Committee on Cancer (AJCC) was a 4-degree 
(grade 1-4) system. Staging in practice though has 
functioned through a two stage system, classifying 
tumours as low or high grade [3]. Core needle biopsy 
has been established for preoperative tumour grad-
ing in an attempt to classify tumours as high or low 
grade, in order to contribute to the most appropri-
ate therapeutic scheme. Although histopathologic 
assessment of biopsy samples is the gold standard 
method for accurate tumour characterisation and 
grading, it might often be subject to sampling errors 
underestimating thus tumour grade and misguiding 

therapeutic approach [4]. Moreover, biopsy is an in-
vasive procedure that can provoke several undesira-
ble effects such as bleeding, pain, wound infection or 
breakdown and spillage of tumour cells. Noninvasive 
tumour characterisation at the early stage of imag-
ing is therefore of utmost importance to ensure the 
choice of the most appropriate therapeutic plan and 
minimise patient discomfort. 

Magnetic resonance imaging (MRI) has emerged 
as the imaging modality of choice for identification, 
staging, and monitoring of the response to therapy 
[5]. However, conventional MRI sequences have not 
equal power to biopsy in differentiating high from 
low soft tissue neoplasms as they exhibit a signifi-
cant number of overlapping radiological features [6]. 
Quantitative MRI (qMRI) biomarkers derived from 
multiple or dynamic series such as volume transfer 
constant (Ktrans), perfusion fraction (f), and trans-
verse magnetisation relaxation constant (T2 value) 
contribute to better description of pathology mi-
croenvironment. Nevertheless, MR quantification 
comes at the expense of prolonged acquisition time, 
comprised spatial resolution, sensitivity to artefacts 
and patient motion, and/or may require administra-
tion of contrast medium. To overcome the aforemen-
tioned challenges, the exploitation of conventional 
(T2) high resolution MRI, acquired in short acquisi-
tion time using a post-processing radiomic analysis 
framework, can potentially yield to complete cov-
erage of soft tissue tumours in high resolution and 
multiple planes, improved robustness to artefacts, 
low requirements in hardware and less patient dis-
comfort. 

The emerging field of radiomics has recently been 
introduced to oncology involving the massive ex-

Results: The classifier, using the three most important 
radiomic features selected though training, yielded an 
accuracy of 0.781 ± 0.15, an area under the receiver oper-
ating characteristic curve (AUROC) equal to 0.814 ± 0.186, 
F1-score of 0.704 ± 0.198, 0.762 ± 0.267 and 0.725 ± 0.283 for 

precision and recall respectively using multiple independ-
ent test sets. 
Conclusions: Radiomic features from routine MR imag-
ing protocols can provide a strong discriminatory perfor-
mance between low and high grade soft tissue sarcomas.

Key words Radiomics; Soft tissue sarcomas; Machine learning; Imaging biomarkers; 
Quantitative MRI
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traction of quantitative imaging features aiming to 
capture non-intuitive information hidden in the im-
ages that can be linked to tumour characterisation 
and prognosis [7]. Although radiomics has been ex-
tensively studied in many anatomical areas includ-
ing head and neck, breast, liver and lung cancer, few 
studies examined the role of radiomics in STSs to the 
best of our knowledge [8, 9]. Corino et al. present-
ed a radiomics analysis based on the apparent dif-
fusion coefficient (ADC) generated maps from diffu-
sion-weighted MRI to distinguish intermediate from 
high grade STSs [10]. The performed analysis derived 
64 imaging features and, when applied to 19 patients, 
achieved an area under the receiver operating char-
acteristic curve (AUROC) of 0.85 ± 0.16 and 0.87 ± 0.34 
using the validation and test set respectively. Anoth-
er study explored the association between STS pa-
tients’ overall survival (OS) and T1-weighted (T1w) 
contrast-enhanced MRI and found that the extracted 
radiomic features can be promising predictors of OS 
[11]. The proposed radiomics model was trained us-
ing 165 patients and performance was assessed using 
external validation (independent cohort comprising 
of 61 patients). Crombe and co-workers investigated 
the role of T2-based MRI delta-radiomics in predict-
ing response of high-grade STS patients to neoadju-
vant chemotherapy [12]. A limited number of radi-
omic features was calculated (33 features) and best 
predictive performance was achieved from 3 top-
ranked features (accuracy of 74.6%). In a similar to 
the presented study, a radiomics analysis framework 

performed on fat-suppressed T2-weighted (T2w) MRI 
on a 3.0 T scanner from 35 pathologically diagnosed 
STS patients identified 5 radiomic features that 
best discriminate low from high-histopathological 
grades. The provided model obtained an AUROC of 
0.92 ± 0.07 using a 5-fold cross-validation where final 
performance was calculated from the average accu-
racy of the 5 folds [13]. 

The purpose of the present study is to propose a 
radiomics analysis framework for the identification 
of a set of quantitative imaging features that can po-
tentially differentiate low from high grade STSs.

Material and Methods
Study Population
Twenty six patients with soft tissue tumours of vari-
able degree of malignancy underwent MRI examina-
tion from July 2015 to February 2019. Exclusion cri-
teria included patients who underwent therapy prior 
to imaging or between imaging and surgical excision 
and patients with tumours completely suppressed by 
fat saturation. Patients with compromised co-oper-
ation were not included in the study. Hence, a total 
of 22 patients were eligible for this study and corre-
sponding images were anonymised and transferred 
to a local database for further post processing. The 
examination protocol was submitted and approved 
by the local ethics committee and moreover all pa-
tients signed an informed consent for the use of their 
data for research purposes. All data were anonymised 
at the hospital premises. Within a short time inter-

Fig. 1. Axial fat suppressed T2w (TE=80 ms) TSE MR images in two different patients: A. low grade myxoid tumour from a 
26-year-old male patient, and B. high grade soft tissue tumour (alveolar soft tissue sarcoma) from a 28-year-old female patient. 
Both are located in the shoulder girdle area.

T2-based MRI radiomic features for discriminating tumour grading in soft tissues sarcomas, p. 22-31
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val from radiological examination, surgical excision 
took place and the specimen was transferred to the 
pathology department for histopathologic analysis 
to conclude on tissue type and grading. Grading was 
based on the FNCLCC system (grades 1-3). Group A 
tumours of grade 1 (low grade) comprised 9 patients 
with histopathologically proven well differentiat-
ed liposarcomas, myxoid liposarcomas and desmoid 
tumour.  Group B (high grading tumours of grade 2 
and 3) was composed of 13 patients with poorly dif-
ferentiated liposarcoma, pleomorphic liposarcomas, 
Ewing sarcoma, leiomyosarcoma and alveolar soft 
tissue sarcoma. Indicative MR images depicting low 
and high grade STSs are shown in Fig. 1.

MR acquisition protocol
Imaging protocol performed at a 1.5 T scanner (Vi-
sion/Sonata hybrid System, Siemens, Erlangen, 
Germany, Gradient Strength: 45mTm-1, Slew Rate: 
200mTm-1s-1) included dual PD to T2w echo (TE1/TE2/
TR: 13/80/3250 ms, NEX: 1) sequence in axial and cor-
onal planes with slice thickness 4 mm (20% interslice 
gap) to ensure complete lesion coverage as well as 
pre and post contrast T1w TSE (TE/TR: 13/498 ms) 
sequences. The number of slices differed between 
patients depending on lesion size. Given the varia-
ble locations of the lesions, the coil selection differed 
between acquisitions to ensure complete lesion cov-
erage at highest possible SNR. The field of view de-
pended on the lesion size and location and was set 
to 200x200mm (frequency phase matrix: 320x289) or 
400x400 mm (384x320). Spectral fat suppression was 

used to create fluid sensitive images with increased 
lesion conspicuity. Acquisition time was 12 min 49 s, 
regardless the variance in the number of slices.

MRI post-processing
The overall framework within this study was devel-
oped to address four major steps of radiomics anal-
ysis including tumour segmentation, calculation of 
high-dimensional quantitative imaging features, fea-
ture selection, and development of predictive mod-
els relying on machine learning techniques (Fig. 2). 
A thorough review concerning radiomics analysis 
workflow is given in [14]. Initially, tumour delinea-
tions were manually traced slice by slice on T2w im-
ages by an MR physicist with 12 years of experience 
in the clinical environment of an MRI suite. Regions 
of Interest (ROIs) were reexamined and confirmed 
or modified by a senior radiologist with 34 years of 
experience in musculoskeletal MRI. Tumour deline-
ations were performed using a modified version of 
our in-house developed software written in Mat-
lab 2013a, concluding to 22 whole tumour volumes 
from all enrolled patients [15]. High-throughput 
patient-specific quantitative imaging features were 
calculated from all tumour volumes using image 
analysis techniques to derive a comprehensive spa-
tial and functional view of the examined tissue areas 
based on intensity, shape and textural characteris-
tics. Specifically, histogram analysis describing the 
spatial relationships between pixels was applied to 
each volume resulting to quantitative metrics in-
cluding mean signal intensity (SI), standard devia-

Fig. 2. Conceptual overview of the proposed radiomics analysis framework comprising of the four major steps of tumour seg-
mentation, feature extraction, feature selection and model development.

T2-based MRI radiomic features for discriminating tumour grading in soft tissues sarcomas, p. 22-31 
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tion, median, skewness, kurtosis, variance, 10% and 
90% percentiles, etc. Volumetric and shape-based 
features that capture the shape characteristics of the 
tumour were also calculated (e.g. volume, surface 
area, sphericity, spherical disproportion, maximum 
3D diameter, etc.). Second-order statistics based on 
grey-level co-occurrence matrices (GLCM), Gray Lev-
el Run Length Matrix (GLRLM) and Gray Level Size 
Zone Matrix (GLSZM) were applied to all delineat-
ed tumour volumes providing relevant information 
about the inter-pixel relationships within each ex-
amined region. All the aforementioned techniques 
were extended to a multiresolution image scaling us-
ing wavelet decompositions of level 1 and 2 and the 
extracted radiomic features were exported across 
different scales and frequency directions. A total of 
1165 imaging features were calculated using Python 
software and the Pyradiomics library [16]. 

Prior to predictive modelling, preprocessing of the 
extracted radiomic features was employed including 
feature selection, feature scaling and oversampling. 
To reduce high-dimensionality of the provided radi-

omic imaging signature, a univariate feature selec-
tion was initially performed and Spearman’s rank 
correlation coefficient (rho) was calculated for each 
feature with respect to tumour grading. A correla-
tion above 0.4 was considered as significant and the 
remaining, indicated by Spearman’s correlation co-
efficient, features were normalised using RobustS-
caler using scikit-learn Python library [17]. Robust-
Scaler was used instead of other widely used tech-
niques (e.g. StandardScaler from scikit-learn) as it is 
robust to outliers and can operate on features that 
are not normally distributed. In this study all radi-
omic features were tested for normality using Shap-
iro-Wilk test and most of them failed to achieve a 
p-value higher than 5% indicating a non-normal dis-
tribution. A multivariate feature selection and rank-
ing was then performed using minimum redundancy 
maximal relevance (mRMR) [18]. Feature selection 
and ranking was performed sequentially using a 
tradeoff for relevance and redundancy by calculat-
ing the mutual information (MI) between the radi-
omic features and the features with the correspond-

Fig. 3. The proposed nested cross-validation schema to assess the generalisation performance of the radiomics framework and 
to select candidate radiomic features for discriminating low from high grade STSs.

T2-based MRI radiomic features for discriminating tumour grading in soft tissues sarcomas, p. 22-31
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ing outcome. The 100 most highly ranked radiomic 
features selected from mRMR were then forwarded 
as input to the predictive modelling phase. In the 
current study, an unbalanced ratio was evident be-
tween the two classes (9/22 patients with low grade 
tumour). To tackle this issue, a synthetic minority 
oversampling (SMOTE) technique was conducted to 
increase the size of the minority class by introducing 
synthetic patients from the corresponding radiom-
ic features [19]. The predictive modelling phase was 
based on ensemble techniques using Random Forest 
classifier from scikit-learn Python library. Random 
Forest (RF) classifier was chosen to discriminate low 
from high grade STSs as it is less prone to overfitting 
and generally performs well when applied to high-di-
mensional low sample size datasets [20]. 

To assess the generalisation performance of the 
proposed radiomics analysis framework and elimi-
nate any bias occurred during training, validation 
and testing of the technique, a repeated nested 
cross-validation (CV) schema was followed as out-
lined in Fig. 3. Although hyperparameter optimisa-
tion was out of scope of this study, since the provided 
classifier was launched using its default parameters, 

a nested CV comprising of an inner stratified 3-fold 
CV and an outer stratified shuffle split (20% for test-
ing and 80% for training) was used for selecting the 
optimal subset of radiomic features and avoid any 
overfitting issues. The overall preprocessing of the 
radiomic features was nested using the inner CV lev-
el and the chosen subset of features were finally used 
to calculate the predictive performance of the model 
at the outer shuffle split level. In more detail, at the 
outer level, the overall dataset was divided into train-
ing (80% of the overall patients) and testing set (20%) 
using stratified random sampling. Subsequently, the 
training set from the outer level was further divid-
ed into 3 inner folds to define and evaluate the pre-
processing phase. Each fold was acted as a validation 
set within the inner CV to evaluate the performance 
generalisability of the classifier when trained using 
the remaining inner folds. The whole nested schema 
was repeated 100 times to iterate through all possible 
combination of train, validation and test sets.

Results
A high-dimensional dataset comprising of 1165 radi-
omic features was calculated from 22 patients (9 of 

Table 1. The ten most important radiomic features according to their proportion of the number of times 
they appear in the classification process during the repeated nested cross-validation. 

Radiomic Features Proportion (%) 

wavelet2-LLL_glrlm_LongRunLowGrayLevelEmphasis 80.25 

wavelet2-LLL_glrlm_LowGrayLevelRunEmphasis 79.75 

wavelet2-LLL_glrlm_ShortRunLowGrayLevelEmphasis 75.75 

wavelet2-LLL_glszm_LowGrayLevelZoneEmphasis 71.75 

wavelet2-LLH_firstorder_Skewness 65.5 

wavelet-LLH_firstorder_Skewness 62.75 

original_glrlm_LongRunLowGrayLevelEmphasis 62.5 

wavelet2-LLL_glszm_SmallAreaLowGrayLevelEmphasis 61.25 

original_glrlm_LowGrayLevelRunEmphasis 61 

original_glrlm_ShortRunLowGrayLevelEmphasis 58.5 

T2-based MRI radiomic features for discriminating tumour grading in soft tissues sarcomas, p. 22-31
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low grade STS) and further analysed using the pro-
posed repeated nested cross-validation (CV) sche-
ma. A total of 300 independent training/validation 
iterations (3 inner folds x 100 outer iterations) were 
performed to assess the importance of each radiomic 
feature in discriminating low from high grade STSs 
and 957 out of 1165 features were reported from the 
mRMR method as candidate features for modelling. 
During the inner part of the repeated nested CV, fea-
ture importance was quantified using: a) the propor-
tion of the number of times each of the 957 features 
was selected as input to the classifier out of the max-
imum number of iterations (300), and b) the feature 
importance as it is calculated from the RF using Gini 
impurity as a criterion. Indicative results from the 
10 most important radiomic features in terms of a) 
and b) are presented in Tables 1 and 2 respectively. 
Concerning criterion a), a subset of radiomic features 
with proportion values above the 95% percentile of 
the proportions related histogram was selected as 
candidate biomarkers. Accordingly, all features hav-
ing an importance based on Gini impurity above a 
specific threshold (above 95% percentile) were also 
determined. To account both in radiomic feature sta-

bility as it is quantified using criterion a) and fea-
ture’s classification importance as determined by the 
RF (criterion b), an intersection of the two distinct 
aforementioned subsets was generated. Given the 
fact that a ratio of 1/10 (number of selected features 
with respect to the examined patients) is recom-
mended in the classification process, the three most 
highly ranked radiomic features from the intersec-
tion were selected as the optimal set (see Table 3). 

RF performance was evaluated comprehensively 
across the 100 outer stratified shuffle split iterations 
using accuracy, AUROC, F1-score, precision and re-
call. The selected radiomic “signature” from the in-
ner part of the proposed CV schema comprising of 
three imaging features was examined in terms of its 
predictive performance using the unseen 100 testing 
sets. All metrics are reported as mean ± std where 
“std” stands for standard deviation. The classifier 
achieved an accuracy of 0.781 ± 0.15, an AUROC equal 
to 0.814 ± 0.186, F1-score of 0.704 ± 0.198, 0.762 ± 0.267 
and 0.725 ± 0.283 for precision and recall when tested 
from multiple independent test sets from the outer 
loop respectively. Classification performance was 
also calculated from the inner part of the repeated 

Table 2. The ten most important radiomic features according to Gini impurity criterion using a RF 
classifier.

Radiomic Features Gini Impurity 

original_shape_Elongation 0.036 

wavelet2-LLL_glrlm_LongRunLowGrayLevelEmphasis 0.033 

original_firstorder_Kurtosis 0.031 

wavelet2-LLL_glrlm_LowGrayLevelRunEmphasis 0.029 

wavelet2-LLL_glrlm_ShortRunLowGrayLevelEmphasis 0.028 

wavelet2-LLL_glszm_LowGrayLevelZoneEmphasis 0.018 

wavelet2-LLH_firstorder_Skewness 0.016 

wavelet-LLH_firstorder_Skewness 0.016 

original_glrlm_LongRunLowGrayLevelEmphasis 0.016 

wavelet2-LLL_glszm_SmallAreaLowGrayLevelEmphasis 0.013 

T2-based MRI radiomic features for discriminating tumour grading in soft tissues sarcomas, p. 22-31
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Table 3. The three most significant radiomic features based on both criteria as outlined from the propor-
tion of the number of times they appear in the classification process and their feature importance level 
according to Gini impurity criterion from the RF classifier during the repeated nested cross-validation.

Radiomic Features Proportion (%) Gini Impurity 

wavelet2-LLL_glrlm_LongRunLowGrayLevelEmphasis 80.25 0.033 

wavelet2-LLL_glrlm_LowGrayLevelRunEmphasis 79.75 0.029 

wavelet2-LLL_glrlm_ShortRunLowGrayLevelEmphasis 75.75 0.028 

nested CV using the aforementioned metrics, yield-
ing training accuracy equal to 0.802 ± 0.196, AUROC of 
0.831 ± 0.206, F1-score of 0.711 ± 0.166, 0.759 ± 0.187 of 
precision and 0.731 ± 0.124 for recall and no statisti-
cal difference according to Mann-Whitney test when 
compared to the results obtained using the unseen 
test sets.

Discussion
Our results suggest that the emerging field of radi-
omics offer a massive amount of quantitative imag-
ing features from T2w MR images from which signif-
icant biomarkers for differentiating low from high 
grade soft tissue sarcomas can be identified after 
proper analysis. In the current study a total of three 
radiomic features were selected as the most signif-
icant imaging features that contribute to the best 
predictive performance when Random Forest clas-
sifier was used for classification. Features Long Run 
Low Gray Level Emphasis (LRLGLE), Low Gray Level 
Run Emphasis (LGLRE) and Short Run Low Gray Level 
Emphasis (SRLGLE) were derived from the Gray Level 
Run Length Matrix (GLRLM) of the image after a two 
level wavelet decomposition. The proposed classifier 
achieved an AUROC of 0.814 ± 0.186 using a repeat-
ed nested cross-validation schema comprising of 100 
independent testing sets to assess its generalisation 
performance. A comprehensive preprocessing phase 
including feature selection, feature scaling and over-
sampling was applied through the training phase to 
each independent training set and a subset of radi-
omic features was defined each time to serve as can-
didate biomarkers for differentiating low from high 
grade STSs. Two distinct criteria were followed to 

select the most important set of radiomic features 
that concluded to the best predictive performance. 
The radiomic analysis framework reported in the in-
troduction achieved an AUROC of 0.92 ± 0.07 in dis-
criminating low from high-histopathological grades, 
whereas the performance from the proposed meth-
odology in terms of AUROC was equal to 0.814 ± 0.186 
[13]. However, one may notice that performance 
might be influenced by the increased signal to noise 
ratio (SNR) and the spatial resolution of the acquired 
MR images when a 3.0 T scanner is used instead of a 
1.5 T (our study). Additionally, different techniques 
were implemented to train and validate each radi-
omics analysis workflow. According to the flowchart 
illustrated in [13], feature selection was first applied 
to the overall dataset and a 5-fold cross-validation 
then divided the dataset for training and testing. In 
this study, to eliminate overfitting and proper assess 
the generalisation performance, a repeated nested 
CV schema was used for training, validation and clas-
sification testing, as well as to find the optimal sub-
set of radiomic features.

A limitation of our study is related to the rather 
limited size of patients recruited for the analysis. 
The increased standard deviation in the performance 
metrics imply that the limited sample size affected 
the stability of the classifier, thus rendering our 
study as an initial one calling for further, more ex-
tensive studies on this field of research. Limited sam-
ple sizes of high-dimensional imaging features are a 
general concern when performing radiomics analy-
sis and overfitting problems might easily occur when 
data is not handled carefully during model training 
and testing. Additionally, RF classifier and mRMR 

T2-based MRI radiomic features for discriminating tumour grading in soft tissues sarcomas, p. 22-31
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were chosen by default as the most suitable methods 
for classification and feature selection respectively. 
A large parameter grid, consisting of several classi-
fiers and feature selection techniques which runs in 
parallel under a generalised repeated cross-valida-
tion framework, might potentially yield to a better 
predictive performance. Lastly, advanced MRI acqui-
sition protocols such as the Diffusion Weighted MRI, 
when further analysed using radiomics, can provide 
additional information to the corresponding ana-
tomical information retrieved from the T2w images 
about the functional and morphological environ-
ment of the STSs. 

In summary, radiomic analysis has the potential to 
present a novel emerging field for the quest of im-
aging biomarkers in oncology and in soft tissue tu-

mours specifically, since it is minimally invasive and 
can be easily repeated enabling the extraction of val-
uable information for preoperative histopathology 
grading prediction, early treatment response assess-
ment and personalised clinical diagnosis.

Conclusion
Taken together, advanced post-processing using ra-
diomics can provide a complementary perspective 
for quantifying conventional T2w MRI sequences 
into high-dimensional imaging features, contribut-
ing to the efficient differentiation of histopathology 
grading in soft tissue sarcomas. R
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