Post-treatment Magnetic Resonance Imaging assessment of brain gliomas

Despoina Voultsinou, Triantafillos Gerukis


Imaging is essential in brain glioma diagnosis, treatment and follow up. Diversity in genetic and phenotypic architectures of brain glioma makes imaging evaluation challenging. Glioma appearance on follow up examination correlates with the response to therapeuric scheme and therapy side effect. Standard magnetic resonance (MR) imaging and advanced  techniques (diffusion, perfusion, spectroscopy) are crucial in evaluation of post-treatment response of brain gliomas. The Response Assessment in Neuro Oncology criteria evolved as an objective guide for imaging assessment of response to treatment  in brain gliomas. This article presents MR imaging of  brain gliomas response to therapy (complete, partial response, stable disease, progress or reccurrence) and the side-effects of the various therapeutic schemes (surgery, radiation, chemotherapy, antiangiogenic therapy, immunotherapy induced toxicity). Pseudoprogression and pseudoresponse are also discussed.


Central nervous system; Magnetic resonance imaging; Brain neoplasms; Perfusion imaging; Diffusion weighted imaging

Full Text:



Omuro A, DeAngelis LM. Glioblastoma and other malignant gliomas. JAMA 2013; 310(17): 1842-1850.

Baker GJ, Yadav VN, Motsch S, et al. Mechanisms of glioma formation: Iterative perivascular glioma growth and invasion leads to tumor progression, VEGF-independent vascularization, and resistance to antiangiogenic therapy. Neoplasia 2014; 16(7): 543-561.

Weller M, Wick W, Aldape K, et al. Glioma. Nat Rev Dis Prim 2015; 1(1): 15017.

Ostrom QT, Gittleman H, Stetson L, et al. Epidemiology of gliomas. Cancer Treat Res 2015; 163: 1-14.

Placone AL, Quiñones-Hinojosa A, Searson PC. The role of astrocytes in the progression of brain cancer: complicating the picture of the tumor microenvironment. Tumor Biol 2016; 37(1): 61-69.

Alifieris C, Trafalis DT. Glioblastoma multiforme: Pathogenesis and treatment. Pharmacol Ther 2015; 152: 63-82.

Villanueva-Meyer JE, Mabray MC, Cha S. Current clinical brain tumor imaging. Clin Neurosurg 2017; 81(3): 397-415.

Mack SC, Hubert CG, Miller TE, et al. An epigenetic gateway to brain tumor cell identity. Nat Neurosci 2016; 19(1): 10-19.

David SC, Huda HAi, Helle BR, et al. Biomarkers in tumors of the central nervous system – a review. APMIS 2019; 127(5): 265-287.

Waitkus MS, Diplas BH, Yan H. Isocitrate dehydrogenase mutations in gliomas. Neuro Oncol 2016; 18(1): 16-26.

Bush NAO, Chang SM, Berger MS. Current and future strategies for treatment of glioma. Neurosurg Rev 2017; 40(1): 1-14.

Nam JY, de Groot JF. Treatment of glioblastoma. J Oncol Pract 2017; 13(10): 629-638.

Weller M, van den Bent M, Hopkins K, et al. EANO guideline for the diagnosis and treatment of anaplastic gliomas and glioblastoma. Lancet Oncol 2014; 15(9): e395-e403.

Jenkinson MD, Barone DG, Bryant A, et al. Intraoperative imaging technology to maximise extent of resection for glioma. Cochrane Database Syst Rev 2018; 1(1): CD012788.

Kuhnt D, Bauer MHA, Nimsky C. Brain shift compensation and neurosurgical image fusion using intraoperative MRI: Current status and future challenges. Crit Rev Biomed Eng 2012; 40(3): 175-185.

Zhang ZZ, Shields LBE, Sun DA, et al. The art of intraoperative glioma identification. Front Oncol 2015; 5: 175.

De Witt Hamer PC, Robles SG, et al. Impact of intraoperative stimulation brain mapping on glioma surgery outcome: A meta-analysis. J Clin Oncol 2012; 30(20): 2559-2265.

Riva M, Casarotti A, Comi A, et al. Brain and music: An intraoperative stimulation mapping study of a professional opera singer. World Neurosurg 2016; 93: 486.e13-18.

Hervey-Jumper SL, Berger MS. Maximizing safe resection of low- and high-grade glioma. J Neurooncol 2016; 130(2): 269-282.

Mert A, Kiesel B, Wöhrer A, et al. Introduction of a standardized multimodality image protocol for navigation-guided surgery of suspected low-grade gliomas. Neurosurg Focus 2015; 38(1): E4.

Taal W, Bromberg JEC, van den Bent MJ. Chemotherapy in CNS glioma. Oncol 2015; 4(3): 179–192.

Kreisl TN. Chemotherapy for malignant gliomas. Semin Radiat Oncol 2009; 19(3): 150-154.

Stupp R, Gander M, Leyvraz S, et al. Current and future developments in the use of temozolomide for the treatment of brain tumours. Lancet Oncol 2001; 2(9): 552-560.

Hart MG, Garside R, Rogers G, et al. Temozolomide for high grade glioma. Cochrane Database Syst Rev 2013; 2013(4): CD007415.

Khasraw M, Lassman AB. Advances in the treatment of malignant Gliomas. Curr Oncol Rep 2010; 12(1): 26-33.

Minniti G, Muni R, Caporello P, et al. Chemoradiation for glioblastoma. Curr Drug Ther 2010; 5(3): 157-163.

Sampson JH, Gunn MD, Fecci PE, et al. Brain immunology and immunotherapy in brain tumours. Nat Rev Cancer 2020; 20(1): 12-25.

Ranjan S, Quezado M, Garren N, et al. Clinical decision making in the era of immunotherapy for high grade-glioma: report of four cases. BMC Cancer 2018; 18(1): 239.

Huang RY, Neagu MR, Reardon DA, et al. Pitfalls in the neuroimaging of glioblastoma in the era of antiangiogenic and immuno/targeted therapy. Detecting illusive disease, defining response. Front Neurol 2015; 6: 33.

Kosztyla R, Reinsberg SA, Moiseenko V, et al. Interhemispheric difference images from postoperative diffusion tensor imaging of gliomas. Cureus 2016; 8(10): e817.

Sinclair AG, Scoffings DJ. Imaging of the post-operative cranium. Radiographics 2010; 30(2): 461-482.

Warmuth-Metz M. Postoperative imaging after brain tumor resection. Acta Neurochir 2003; 88: 13-20.

Macdonald DR, Cascino TL, Schold SC, et al. Response criteria for phase II studies of supratentorial malignant glioma. J Clin Oncol 1990; 8(7): 1277-1280.

Law M, Oh S, Babb JS, et al. Low-grade gliomas: Dynamic susceptibility-weighted contrast-enhanced perfusion MR imaging-Prediction of patient clinical response. Radiology 2006; 238(2): 658-667.

Chinot OL, Macdonald DR, Abrey LE, et al. Response assessment criteria for glioblastoma: Practical adaptation and implementation in clinical trials of antiangiogenic therapy. Curr Neurol Neurosci Rep 2013; 13(5): 347.

Gerstner ER, Batchelor TT. Imaging and response criteria in gliomas. Curr Opin Oncol 2010; 22(6): 598-603.

Lutz K, Radbruch A, Wiestler B, et al. Neuroradiological response criteria for high-grade gliomas. Clin Neuroradiol 2011; 21(4): 199-205.

Lucas J, Zada G. Radiology: Criteria for determining response to treatment and recurrence of high-grade gliomas. Neurosurg Clin N Am 2012; 23(2): 269-276.

Khan MN, Sharma AM, Pitz M, et al. High-grade glioma management and response assessment—recent advances and current challenges. Curr Oncol 2016; 23(4): e383-391.

Leao DJ, Craig PG, Godoy LF, et al. Response assessment in neuro-oncology criteria for gliomas: Practical approach using conventional and advanced techniques. AJNR Am J Neuroradiol 2020; 41(1): 10-20.

van Linde ME, Brahm CG, de Witt Hamer PC, et al. P08.71 Treatment outcome of patients with recurrent glioblastoma multiforme: a retrospective multicenter analysis. J Neurooncol 2017; 135(1): 183-192.

Wen PY, Macdonald DR, Reardon DA, et al. Updated response assessment criteria for high-grade gliomas: Response assessment in neuro-oncology working group. J Clin Oncol 2010; 28(11): 1963-1972.

Hesketh RL, Wang J, Wright AJ, et al. Magnetic resonance imaging is more sensitive than PET for detecting treatment-induced cell death–dependent changes in glycolysis. Cancer Res 2019; 79(14): 3557-3569.

Sharma M, Juthani RG, Vogelbaum MA. Updated response assessment criteria for high-grade glioma: beyond the MacDonald criteria. Chinese Clin Oncol 2017; 6(4): 37.

Wen PY, Chang SM, Van Den Bent MJ, et al. Response assessment in neuro-oncology clinical trials. J Clin Oncol 2017; 35(21): 2439-2449.

Clarke JL, Chang S. Pseudoprogression and pseudoresponse: Challenges in brain tumor imaging. Curr Neurol Neurosci Rep 2009; 9(3): 241-246.

Brandsma D, van den Bent MJ. Pseudoprogression and pseudoresponse in the treatment of gliomas. Curr Opin Neurol 2009; 22(6): 633-638.

Hygino da Cruz LC Jr, Rodrigue I, Domingues RC, et al. Pseudoprogression and pseudoresponse: Imaging challenges in the assessment of posttreatment glioma. AJNR Am J Neuroradiol 2011; 32(11): 1978-1985.

Thust SC, Van den Bent MJ, Smits MJ. Pseudoprogression of brain tumors. Magn Reson Imaging 2018; 48(3): 571-589.

Rheims S, Ricard D, van den Bent M, et al. Peri-ictal pseudoprogression in patients with brain tumor. Neuro Oncol 2011; 13(7): 775-782.

Holdhoff M, Ye X, Piotrowski AF, et al. The consistency of neuropathological diagnoses in patients undergoing surgery for suspected recurrence of glioblastoma. J Neurooncol 2019; 141(2): 347-354.

Na A, Haghigi N, Drummond KJ. Cerebral radiation necrosis. Asia Pac J Clin Oncol 2014; 10(1): 11-21.

Mehta S, Shah A, Jung H. Diagnosis and treatment options for sequelae following radiation treatment of brain tumors. Clin Neurol Neurosurg 2017; 163: 1-8.

Bisdas S, Naegele T, Ritz R, et al. Distinguishing recurrent high-grade gliomas from radiation injury. Acad Radiol 2011; 18(5): 575-583.

Shah R, Vattoth S, Jacob R, et al. Radiation necrosis in the brain: Imaging features and differentiation from tumor recurrence. Radiographics 2012; 32(5): 1343-1359.

Nael K, Bauer AH, Hormigo A, et al. Multiparametric MRI for differentiation of radiation necrosis from recurrent tumor in patients with treated glioblastoma. AJR Am J Roentgenol 2018; 210(1): 18-23.

Kumar AJ, Leeds NE, Fuller GN, et al. Malignant gliomas: MR imaging spectrum of radiation therapy-and chemotherapy-induced necrosis of the brain after treatment. Radiology 2000; 217(2): 377-384.

Lawrence YR, Li XA, el Naqa I, et al. Radiation dose–volume effects in the brain. Int J Radiat Oncol 2010; 76(3): S20-S27.

Upadhyay N, Waldman AD. Conventional MRI evaluation of gliomas. Br J Radiol 2011; 84(special_issue_2): S107-S111. doi:10.1259/bjr/65711810.

Rahmathulla G, Marko NF, Weil RJ. Cerebral radiation necrosis: A review of the pathobiology, diagnosis and management considerations. J Clin Neurosci 2013; 20(4): 485-502.

Zhou J, Tryggestad E, Wen Z, et al. Differentiation between glioma and radiation necrosis using molecular magnetic resonance imaging of endogenous proteins and peptides. Nat Med 2011; 17(1): 130-134.

Hyare H, Thust S, Rees J. Advanced MRI techniques in the monitoring of treatment of gliomas. Curr Treat Options Neurol 2017; 19(3): 11.

Mullins ME, Barest GD, Schaefer PW, et al. Radiation necrosis versus glioma recurrence: conventional MR imaging clues to diagnosis. AJNR Am J Neuroradiol 2005; 26(8): 1967-1972.

Hazle JD, Jackson EF, Schomer DF, et al. Dynamic imaging of intracranial lesions using fast spin-echo imaging: Differentiation of brain tumors and treatment effects. J Magn Reson Imaging 1997; 7(6): 1084-1093.

Svolos P, Kousi E, Kapsalaki E, et al. The role of diffusion and perfusion weighted imaging in the differential diagnosis of cerebral tumors: A review and future perspectives. Cancer Imaging 2014; 14(1): 20.

Hein PA, Eskey CJ, Dunn JF, et al. Diffusion-weighted imaging in the follow-up of treated high-grade gliomas: Tumor recurrence versus radiation injury. AJNR Am J Neuroradiol 2004; 25(2): 201-209.

Provenzale JM, Mukundan S, Barboriak DP. Diffusion-weighted and perfusion MR imaging for brain tumor characterization and assessment of treatment response. Radiology 2006; 239(3): 632-649.

Chao ST, Ahluwalia MS, Barnett GH, et al. Challenges with the diagnosis and treatment of cerebral radiation necrosis. Int J Radiat Oncol 2013; 87(3): 449-457.

Greene-Schloesser D, Robbins ME, Peiffer AM, et al. Radiation-induced brain injury: A review. Front Oncol 2012; 2: 73.

Asao C, Korogi Y, Kitajima M, et al. Diffusion-weighted imaging of radiation-induced brain injury for differentiation from tumor recurrence. AJNR Am J Neuroradiol 2005; 26(6): 1455-1460.

Zikou A, Sioka C, Alexiou GA, et al. Radiation necrosis, pseudoprogression, pseudoresponse, and tumor recurrence: Imaging challenges for the evaluation of treated gliomas. Contrast Media Mol Imaging 2018; 2018: 6828396.

Sundgren PC. MR spectroscopy in radiation injury. AJNR Am J Neuroradiol 2009; 30(8): 1469-1476.

Fink JR, Carr RB, Matsusue E, et al. Comparison of 3 Tesla proton MR spectroscopy, MR perfusion and MR diffusion for distinguishing glioma recurrence from posttreatment effects. J Magn Reson Imaging 2012; 35(1): 56-63.

Elmogy SA, Ezzat Mousa A, Elashry MS. MR spectroscopy in post-treatment follow up of brain tumors. Egypt J Radiol Nucl Med 2011; 42(3–4): 413–424.

de Oliveira Franco Á, Anzolin E, Schneider Medeiros M, et al. SMART syndrome identification and successful treatment. Case Rep Neurol 2021; 13: 40–45.

Kerklaan JP, Lycklama á Nijeholt GJ, Wiggenraad RG, et al. SMART syndrome: a late reversible complication after radiation therapy for brain tumours. J Neurol 2011; 258(6): 1098-1104.

Jaraba S, Puig O, Miró J, et al. Refractory status epilepticus due to SMART syndrome. Epilepsy Behav 2015; 49: 189-192.

Vos MJ, Uitdehaag BMJ, Barkhof F, et al. Interobserver variability in the radiological assessment of response to chemotherapy in glioma. Neurology 2003; 60(5): 826-830.

Kumar Y, Drumsta D, Mangla M, et al. Toxins in brain! magnetic resonance (Mr) imaging of toxic leukoencephalopathy – a pictorial essay. Pol J Radiol 2017; 82: 311-319.

Moore-Maxwell CA, Datto MB, Hulette CM. Chemotherapy-induced toxic leukoencephalopathy causes a wide range of symptoms: a series of four autopsies. Mod Pathol 2004; 17(2): 241-247.

McKinney AM, Kieffer SA, Paylor RT, et al. Acute toxic leukoencephalopathy: Potential for reversibility clinically and on MRI Wwth diffusion-weighted and FLAIR imaging. AJR Am J Roentgenol 2009; 193(1): 192-206.

Salkade PR, Lim TA. Methotrexate-induced acute toxic leukoencephalopathy. J Cancer Res Ther 2012; 8(2): 292-296.

Bot I, Blank CU, Boogerd W, et al. Neurological immune-related adverse events of ipilimumab. Pract Neurol 2013; 13(4): 278-280.

Iwama S, De Remigis A, Callahan MK, et al. Pituitary expression of CTLA-4 mediates hypophysitis secondary to Administration of CTLA-4 blocking antibody. Sci Transl Med 2014; 6(230): 230ra45.

Albarel F, Gaudy C, Castinetti F, et al. Long-term follow-up of ipilimumab-induced hypophysitis, a common adverse event of the anti-CTLA-4 antibody in melanoma. Eur J Endocrinol 2015; 172(2): 195-204.

Joshi MN, Whitelaw BC, Palomar MTP, et al. Immune checkpoint inhibitor-related hypophysitis and endocrine dysfunction: clinical review. Clin Endocrinol (Oxf) 2016; 85(3): 331-339.

Fink J, Born D, Chamberlain MC. Pseudoprogression: relevance with respect to treatment of high-grade gliomas. Curr Treat Options Oncol 2011; 12(3): 240-252.

González-Suárez I, Aguilar-Amat MJ, Trigueros M, et al. Leukoencephalopathy due to oral methotrexate. Cerebellum 2014; 13(1): 178-183.

Ismail M, Hill V, Statsevych V, et al. Shape features of the lesion habitat to differentiate brain tumor progression from pseudoprogression on routine multiparametric MRI: A multisite study. AJNR Am J Neuroradiol 2018; 39(12): 2187-2193.

Matsuo M, Tanaka H, Yamaguchi T, et al. Pseudoprogression of glioblastoma multiforme after chemoradiation therapy: Diagnosis by 11C-methionine Positron Emission Tomography (PET). Int J Radiat Oncol 2016; 96(2): E102.

Galldiks N, Kocher M, Langen K-J. Pseudoprogression after glioma therapy: an update. Expert Rev Neurother 2017; 17(11): 1109-1115.



  • There are currently no refbacks.