Dynamic Susceptibility Contrast MRI in Gliomas: What the Radiologist Needs to Know
Abstract
Perfusion MRI analyses tissues’ temporal responses to the inflowing exogenous contrast agents or labeled blood to characterize the hemodynamics properties of the tissues. Perfusion MRI techniques are sensitive to microvasculature, thus, can be a robust tool to study brain tumors where the neovascularization is a hallmark of malignancy. The derived indices can be helpful in many aspects, including tumor grading, prediction of malignant transformation, patient management planning, and monitoring treatment responses. A major MRI perfusion approach using exogenous contrast agent is dynamic susceptibility contrast MRI (DSC-MRI). With the increasing need for perfusion MR imaging in clinical practice, it is important to understand the basic principles of the technique and its meaningful clinical applications. In this review, we discuss the most commonly used perfusion sequence, DSC-MRI. We provide a comprehensive overview of the principles for clinical neuroradiologists and neuroscientists to help improve their understanding of the underlying theory and the technical aspects of DSC-MRI, as well as image acquisition, image analysis, its possible pitfalls, and its clinical applications in tumor imaging.
Full Text:
PDFReferences
Guyton AC, Hall JE. Textbook of medical physiology. Eleventh edition; W B Saunders Company 2006: 673-768.
Raichle ME, Mintun MA. Brain work and brain imaging. Annual Review of Neuroscience 2006; 29(1): 449-476.
Lantz BM, Foerster JM, Link DP, et al. Regional distribution of cardiac output: Normal values in man determined by video dilution technique. American Journal of Roentgenology 1981; 137(5): 903-907.
Barker PB, Golay X, Zaharchuk G. Clinical Perfusion MRI. Cambridge University Press 2013; 505.
Cuenod CA, Balvay D. Perfusion and vascular permeability: Basic concepts and measurement in DCE-CT and DCE-MRI. Diagnostic and Interventional Imaging Elsevier Masson SAS 2013; 94(12): 1187-1204.
Ryu CW, Lee DH, Kim HS, et al. Acquisition of MR perfusion images and contrast-enhanced MR angiography in acute ischaemic stroke patients: Which procedure should be done first? British Journal of Radiology 2006; 79(948): 962-967.
Lin K, Kazmi KS, Law M, et al. Measuring elevated microvascular permeability and predicting hemorrhagic transformation in acute ischemic stroke using first-pass dynamic perfusion CT imaging. AJNR Am J Neuroradiol 2007; 28(7): 1292-1298.
Siemund R, Cronqvist M, Andsberg G, et al. Cerebral perfusion imaging in hemodynamic stroke: Be aware of the pattern. Interv Neuroradiol. Centauro Srl 2009; 15(4): 385-394.
Zaharchuk G. Arterial spin labeling for acute stroke: Practical considerations. Transl Stroke Res. Springer-Verlag 2012; 3(2): 228-235.
Wang DJJ, Alger JR, Qiao JX, et al. Multi-delay multi-parametric arterial spin-labeled perfusion MRI in acute ischemic stroke - Comparison with dynamic susceptibility contrast enhanced perfusion imaging. NeuroImage: Clinical 2013; 3: 1-7.
Hartkamp NS, Petersen ET, De Vis JB, et al. Mapping of cerebral perfusion territories using territorial arterial spin labeling: techniques and clinical application. NMR Biomed 2013; 26(8): 901-912.
Law M, Yang S, Wang H, et al. Glioma grading: Sensitivity, specificity, and predictive values of perfusion MR imaging and proton MR spectroscopic imaging compared with conventional MR imaging. AJNR Am J Neuroradiol. American Society of Neuroradiology 2003; 24(10): 1989-1998.
Maia ACM, Malheiros SMF, da Rocha AJ, et al. Stereotactic biopsy guidance in adults with supratentorial nonenhancing gliomas: Role of perfusion-weighted magnetic resonance imaging. J Neurosurg. 2004; 101: 970-976.
Lev MH, Ozsunar Y, Henson JW, et al. Glial tumor grading and outcome prediction using dynamic spin-echo MR susceptibility mapping compared with conventional contrast-enhanced MR: Confounding effect of elevated rCBV of oligodendrogliomas. AJNR Am J Neuroradiol 2004; 25: 214-221.
Lupo JM, Cha S, Chang SM, et al. Dynamic susceptibility-weighted perfusion imaging of high-grade gliomas: Characterization of spatial heterogeneity. AJNR Am J Neuroradiol 2005; 26: 1446-1454.
Chung WJ, Kim HS, Kim N, et al. Recurrent glioblastoma: Optimum area under the curve method derived from dynamic contrast-enhanced T1-weighted perfusion MR imaging. Radiology 2013;269: 561-568.
Yamamoto T, Kinoshita K, Kosaka N, et al. Monitoring of extra-axial brain tumor response to radiotherapy using pseudo-continuous arterial spin labeling images: Preliminary results. Magnetic Resonance Imaging 2013; 31: 1271-1277.
Arevalo-Perez J, Kebede AA, Peck KK, et al. Dynamic Contrast-Enhanced MRI in Low-Grade vs Anaplastic Oligodendrogliomas. Journal of Neuroimaging 2016; 26: 366-371.
Smievoll AI, Engelsen B, Karlsen BE, et al. Perfusion-weighted (PW) and flair-weighted magnetic resonance imaging (MRI) for local diagnosis in epilepsy. NeuroImage 2000; 11: S162.
Oner AY, Eryurt B, Ucar M, et al. pASL vs DSC perfusion MRI in lateralizing temporal lobe epilepsy. Acta Radiol 2015; 56: 477-481.
Sierra-Marcos A, Carreño M, Setoain X, et al. Accuracy of arterial spin labeling magnetic resonance imaging (MRI) perfusion in detecting the epileptogenic zone in patients with drug-resistant neocortical epilepsy: Comparison with electrophysiological data, structural MRI, SISCOM and FDG-PET. Eur J Neurol 2016; 23: 160-167.
Wakisaka K, Morioka T, Shimogawa T, et al. Epileptic Ictal Hyperperfusion on Arterial Spin Labeling Perfusion and Diffusion-Weighted Magnetic Resonance Images in Posterior Reversible Encephalopathy Syndrome. J Stroke Cerebrovasc Dis 2016; 25: 228-237.
Bozzao A, Floris R, Baviera ME, et al. Diffusion and perfusion MR imaging in cases of Alzheimer’s disease: Correlations with cortical atrophy and lesion load. AJNR Am J Neuroradiol. American Society of Neuroradiology 2001; 22: 1030-1036.
Kamagata K, Motoi Y, Hori M, et al. Posterior hypoperfusion in Parkinson’s disease with and without dementia measured with arterial spin labeling MRI. J Magn Reson Imaging 2011; 33: 803-807.
Gupta RK, Awasthi R, Garg RK, et al. T1-weighted dynamic contrast-enhanced MR evaluation of different stages of neurocysticercosis and its relationship with serum MMP-9 expression. AJNR Am J Neuroradiol. American Society of Neuroradiology. 2013; 34: 997-1003.
Lacalle-Aurioles M, Alemán-Gómez Y, Guzmán-De-Villoria JA, et al. Is the cerebellum the optimal reference region for intensity normalization of perfusion MR studies in early Alzheimer’s disease? Lakshmana MK 2013; 8: e81548.
Mak HKF, Chan Q, Zhang Z, et al. Quantitative assessment of cerebral hemodynamic parameters by QUASAR arterial spin labeling in Alzheimer’s disease and cognitively normal Elderly adults at 3-tesla. J Alzheimers Dis 2013; 31: 33-44.
Cramer SP, Larsson HBW. Accurate determination of blood-brain barrier permeability using dynamic contrast-enhanced T1-weighted MRI: A simulation and in vivo study on healthy subjects and multiple sclerosis patients. J Cereb Blood Flow Metab 2014; 34: 1655-1665.
Milchenko MV, Rajderkar D, LaMontagne P, et al. Comparison of Perfusion- and Diffusion-weighted Imaging Parameters in Brain Tumor Studies Processed Using Different Software Platforms. Academic Radiology 2014; 21: 1294-1303.
Hahn OM, Yang C, Medved M, et al. Dynamic contrast-enhanced magnetic resonance imaging pharmacodynamic biomarker study of sorafenib in metastatic renal carcinoma. J Clin Oncol. 2008; 26: 4572-4578.
Jain R, Scarpace LM, Ellika S, et al. Imaging response criteria for recurrent gliomas treated with bevacizumab: Role of diffusion weighted imaging as an imaging biomarker. J Neurooncol 2010;96: 423-431.
Chung C, Jalali S, Foltz W, et al. Imaging Biomarker Dynamics in an Intracranial Murine Glioma. Study of Radiation and Antiangiogenic Therapy. 2013; 85: 805-812.
Hales PW, Phipps KP, Kaur R, et al. A Two-Stage Model for in Vivo Assessment of Brain Tumor Perfusion and Abnormal Vascular Structure Using Arterial Spin Labeling. Platten M 2013; 8: e75717.
Villringer A, Rosen BR, Belliveau JW, et al. Dynamic imaging with lanthanide chelates in normal brain: Contrast due to magnetic susceptibility effects. Magn Reson Med 1988;6: 164-174.
Rosen BR, Belliveau JW, Vevea JM, et al. Perfusion imaging with NMR contrast agents. Magn Reson Med. 1990; 14: 249-265.
Calamante F, Thomas DL, Pell GS, et al. Measuring Cerebral Blood Flow Using Magnetic Resonance Imaging Techniques. Journal of Cerebral Blood Flow & Metabolism 1999; 19: 701-735
Ostergaard L. Principles of cerebral perfusion imaging by bolus tracking. J Magn Reson Imaging 2005; 22: 710-717.
Calamante F. Perfusion MRI using dynamic-susceptibility contrast MRI: Quantification issues in patient studies. Top Magn Reson Imaging 2010;21: 75-85.
Shiroishi MS, Castellazzi G, Boxerman JL, et al. Principles of T2*-weighted dynamic susceptibility contrast MRI technique in brain tumor imaging. J Magn Reson Imaging 2014; 41: 296-313.
Xu B, Spincemaille P, Liu T, et al. Quantification of cerebral perfusion using dynamic quantitative susceptibility mapping. Magn Reson Med. 2015; 73: 1540-1548.
Ostergaard L, Weisskoff RM, Chesler DA, et al. High resolution measurement of cerebral blood flow using intravascular tracer bolus passages. Part I: Mathematical approach and statistical analysis. Magn Reson Med 1996; 36: 715-725.
Lassen NA, Perl W. Tracer kinetic methods in medical physiology. Raven Press New York 1979; ix: 189.
Sourbron S. A tracer-kinetic field theory for medical imaging. IEEE Trans Med Imaging 2014;33: 935-946.
Boxerman JL, Schmainda KM, Weisskoff RM. Relative cerebral blood volume maps corrected for contrast agent extravasation significantly correlate with glioma tumor grade, whereas uncorrected maps do not. AJNR Am J Neuroradiol 2006; 27: 859-867.
Calamante F. Arterial input function in perfusion MRI: A comprehensive review. Prog Nucl Magn Reson Spectrosc 2013; 74: 1-32.
Bleeker EJ, van Buchem MA, van Osch MJ. Optimal location for arterial input function measurements near the middle cerebral artery in first-pass perfusion MRI. Journal of Cerebral Blood Flow & Metabolism 2009; 29: 840-852.
Ostergaard L, Sorensen AG, Kwong KK, et al. High resolution measurement of cerebral blood flow using intravascular tracer bolus passages. Part II: Experimental comparison and preliminary results. Magn Reson Med. 1996; 36: 726-736.
Tofts P. Quantitative MRI of the Brain. First edition. John Wiley & Sons. 2003.PP, 366-412.
Duyn JH, van Gelderen P, Barker P, et al. 3D bolus tracking with frequency-shifted BURST MRI. J Comput Assist Tomogr 1994;18: 680-687.
Rempp KA, Brix G, Wenz F, et al. Quantification of regional cerebral blood flow and volume with dynamic susceptibility contrast-enhanced MR imaging. Radiology 1994;193: 637-641.
Wirestam R, Andersson L, Ostergaard L, et al. Assessment of regional cerebral blood flow by dynamic susceptibility contrast MRI using different deconvolution techniques. Magn Reson Med 2000; 43: 691-700.
Perman WH, Gado MH, Larson KB, et al. Simultaneous MR Acquisition of Arterial and Brain Signal-Time Curves 1992. Perman 2005; 28: 74-83.
Pedersen M, Klarh fer M, Christensen SR, et al. Quantitative cerebral perfusion using the PRESTO acquisition scheme. J Magn Reson Imaging. 2004; 20: 930-940.
Willats L, Calamante F. The 39 steps: Evading error and deciphering the secrets for accurate dynamic susceptibility contrast MRI. Lu H, editor. NMR Biomed 2013; 26: 913-931.
Heiland S, Kreibich W, Reith W, et al. Comparison of echo-planar sequences for perfusion-weighted MRI: Which is best? 1998; 40: 216-221.
Boxerman JL, Hamberg LM, Rosen BR, et al. Mr Contrast Due to Intravascular Magnetic-Susceptibility Perturbations. Magn Reson Med 1995; 34: 555-566.
Thilmann O, Larsson EM, Björkman-Burtscher IM, et al. Effects of echo time variation on perfusion assessment using dynamic susceptibility contrast MR imaging at 3 tesla. Magnetic Resonance Imaging 2004; 22: 929-935.
Smith MR, Lu H, Frayne R. Signal-to-noise ratio effects in quantitative cerebral perfusion using dynamic susceptibility contrast agents. Magn Reson Med. 2003; 49: 122-128.
Knutsson L, Ståhlberg F, Wirestam R. Aspects on the accuracy of cerebral perfusion parameters obtained by dynamic susceptibility contrast MRI: A simulation study. Magnetic Resonance Imaging 2004; 22: 789-798.
Calamante F, Vonken E-JPA, van Osch MJP. Contrast agent concentration measurements affecting quantification of bolus-tracking perfusion MRI. Magn Reson Med 2007; 58: 544-553.
Welker K, Boxerman J, Kalnin A, et al. ASFNR recommendations for clinical performance of MR dynamic susceptibility contrast perfusion imaging of the brain. AJNR Am J Neuroradiol 2015; E41-E51.
Calamante F. Bolus dispersion issues related to the quantification of perfusion MRI data. J Magn Reson Imaging 2005; 22: 718-722.
Essig M, Nguyen TB, Shiroishi MS, et al. Perfusion MRI: The Five Most Frequently Asked Clinical Questions. American Journal of Roentgenology 2013; 201: W495-W510.
Roberts TPL, Mikulis D. Neuro MR: Principles. J Magn Reson Imaging 2007; 26: 823-837.
Tombach B, Benner T, Reimer P, et al. Do Highly Concentrated Gadolinium Chelates Improve MR Brain Perfusion Imaging? Intraindividually Controlled Randomized Crossover Concentration Comparison Study of 0.5 vs 1.0 mol/L Gadobutrol. 2003; 226: 880-888.
Thilmann O, Larsson E-M, Björkman-Burtscher IM, et al. Comparison of contrast agents with high molarity and with weak protein binding in cerebral perfusion imaging at 3 T. J Magn Reson Imaging. 2005; 22: 597-604.
Knutsson L, Ståhlberg F, Wirestam R. Absolute quantification of perfusion using dynamic susceptibility contrast MRI: pitfalls and possibilities. Magn Reson Mater Phy. 2009;23: 1-21
van Osch MJP, Vonken E-JPA, Viergever MA, et al. Model of the human vasculature for studying the influence of contrast injection speed on cerebral perfusion MRI. Magn Reson Med 2003; 50: 614-622.
Jackson A. Analysis of dynamic contrast enhanced MRI. British Journal of Radiology 2004; 77(2): S154-S166.
Weisskoff RM, Chesler D, Boxerman JL, et al. Pitfalls in MR measurement of tissue blood flow with intravascular tracers: Which mean transit time? Magn Reson Med 1993; 29: 553-558.
Perthen JE, Calamante F, Gadian DG, et al. Is quantification of bolus tracking MRI reliable without deconvolution? Magn Reson Med 2002;47: 61-67.
Cha S, Knopp EA, Johnson G, et al. Intracranial Mass Lesions: Dynamic Contrast-enhanced Susceptibility-weighted Echo-planar Perfusion. MR Imaging 2002; 223: 11-29.
Thompson G, Mills SJ, Stivaros SM, et al. Imaging of brain tumors: Perfusion/ permeability. Neuroimaging Clinics of North America 2010; 20: 337-353.
Caseiras GB, Thornton JS, Yousry T, et al. Inclusion or Exclusion of Intratumoral Vessels in Relative Cerebral Blood Volume Characterization in Low-Grade Gliomas: Does It Make a Difference? AJNR AM J Neuroradiol 2008; 29: 1140-1141.
Wetzel SG, Cha S, Johnson G, et al. Relative Cerebral Blood Volume Measurements in Intracranial Mass Lesions: Interobserver and Intraobserver Reproducibility Study. Radiology 2002; 224(3): 797-803.
Yankeelov TE, Pickens DR, Price RR. Quantitative MRI in Cancer. Taylor & Francis. 2011. pp 224-385
Emblem KE, Nedregaard B, Nome T, et al. Glioma grading by using histogram analysis of blood volume heterogeneity from MR-derived cerebral blood volume maps. Radiology. Radiological Society of North America 2008; 247: 808-817.
Baek HJ, Kim HS, Kim N, et al. Percent change of perfusion skewness and kurtosis: A potential imaging biomarker for early treatment response in patients with newly diagnosed glioblastomas. Radiology 2012; 264: 834-843.
Kim HS, Kim J-H, Kim S-H, et al. Posttreatment high-grade glioma: usefulness of peak height position with semiquantitative MR perfusion histogram analysis in an entire contrast-enhanced lesion for predicting volume fraction of recurrence. Radiology 2010; 256: 906-915.
Kim H, Choi SH, Kim J-H, et al. Gliomas: Application of cumulative histogram analysis of normalized cerebral blood volume on 3 T MRI to tumor grading. PLoS ONE 2013; 8: e63462.
Law M, Young R, Babb J, et al. Histogram analysis vs region of interest analysis of dynamic susceptibility contrast perfusion MR imaging data in the grading of cerebral gliomas. AJNR Am J Neuroradiol 2007; 28: 761-766.
Lee J, Choi SH, Kim J-H, et al. Glioma grading using apparent diffusion coefficient map: Application of histogram analysis based on automatic segmentation. NMR Biomed 2014; 27: 1046-1052.
Young R, Babb J, Law M, et al. Comparison of region-of-interest analysis with three different histogram analysis methods in the determination of perfusion metrics in patients with brain gliomas. J Magn Reson Imaging 2007;26: 1053-1063.
Bleeker EJW, van Osch MJP, Connelly A, et al. New criterion to aid manual and automatic selection of the arterial input function in dynamic susceptibility contrast MRI. Magn Reson Med 2011;65: 448-456.
Mlynash M, Eyngorn I, Bammer R, et al. Automated method for generating the arterial input function on perfusion-weighted MR imaging: Validation in patients with stroke. AJNR Am J Neuroradiol 2005; 26: 1479-1486.
Christensen S, Gyldensted L, Østergaard L. Automatic selection of arterial input function using cluster analysis. Magn Reson Med 2006; 55: 524-531.
Yin J, Sun H, Yang J. Automated detection of the arterial input function using normalized cut clustering to determine cerebral perfusion by dynamic susceptibility contrast-magnetic resonance imaging. J Magn Reson Imaging 2014.
Calamante F, Mørup M, Hansen LK. Defining a local arterial input function for perfusion MRI using independent component analysis. Magn Reson Med 2004; 52: 789-797.
Sourbron S. Technical aspects of MR perfusion. European Journal of Radiology 2010; 76: 304-313.
Vonken EJPA, van Osch MJP, Bakker CJG, et al. Simultaneous quantitative cerebral perfusion and Gd-DTPA extravasation measurement with dual-echo dynamic susceptibility contrast MRI. Magn Reson Med 2000; 43: 820-827.
Haselhorst R, Kappos L, Bilecen D, et al. Dynamic susceptibility contrast MR imaging of plaque development in multiple sclerosis: Application of an extended blood-brain barrier leakage correction. J Magn Reson Imaging 2000;11: 495-505.
Sorensen A, Reimer P. Cerebral MR perfusion imaging: Principles and current applications. Stuttgart: Thieme, 2000: 152.
Bjornerud A, Sorensen AG, Emblem KE. T1- and T2*- dominant extravasation correct ion in DSC-MRI: Part I - theoretical considerations and implications for assessment of tumor hemodynamic properties. J Cereb Blood Flow Metab. Nature Publishing Group. 2011; 31: 2041-2053.
Emblem KE, Bjornerud A, Borra RJH,et al. T1- and T2*-dominant extravasation correction in DSC-MRI: Part II-predicting patient outcome after a single dose of cediranib in recurrent glioblastoma patients. J Cereb Blood Flow Metab 2011; 31: 2054-2064.
Paulson ES, Schmainda KM. Comparison of dynamic susceptibility-weighted contrast-enhanced MR methods: recommendations for measuring relative cerebral blood volume in brain tumors. Radiology 2008; 249: 601-613.
Boxerman JL, Prah DE, Paulson ES, et al. The Role of preload and leakage correction in gadolinium-based cerebral blood volume estimation determined by comparison with MION as a criterion standard. AJNR Am J Neuroradiol 2012; 33: 1081-1087.
Quarles CC, Ward BD, Schmainda KM. Improving the reliability of obtaining tumor hemodynamic parameters in the presence of contrast agent extravasation. Magn Reson Med 2005;53: 1307-1316.
Knopp EA, Cha S, Johnson G, et al. Glial neoplasms: Dynamic contrast-enhanced T2*-weighted MR imaging. Radiology 1999; 211: 791-798.
Uematsu H, Maeda M, Sadato N, et al. Blood volume of gliomas determined by double-echo dynamic perfusion-weighted MR imaging: A preliminary study. AJNR Am J Neuroradiol 2001; 22: 1915-1919.
Donahue KM, Krouwer HGJ, Rand SD, et al. Utility of simultaneously acquired gradient-echo and spin-echo cerebral blood volume and morphology maps in brain tumor patients. Magn Reson Med. 2000; 43: 845-853.
Schmainda KM, Rand SD, Joseph AM, et al. Characterization of a first-pass gradient-echo spin-echo method to predict brain tumor grade and angiogenesis. AJNR Am J Neuroradiol 2004; 25: 1524-1532.
Simonsen CZ, Ostergaard L, Vestergaard-Poulsen P, Røhl L, et al. CBF and CBV measurements by USPIO bolus tracking: reproducibility and comparison with Gd-based values. J Magn Reson Imaging 1999; 9: 342-347.
Gahramanov S, Muldoon LL, Li X, et al. Improved perfusion MR imaging assessment of intracerebral tumor blood volume and antiangiogenic therapy efficacy in a rat model with ferumoxytol. Radiology 2011; 261: 796-804.
Benner T, Heiland S, Erb G, et al. Accuracy of gamma-variate fits to concentration-time curves from dynamic susceptibility-contrast enhanced MRI: influence of time resolution, maximal signal drop and signal-to-noise. Magnetic Resonance Imaging 1997; 15: 307-317.
Lee SJ, Kim JH, Kim YM, et al. Perfusion MR imaging in gliomas: comparison with histologic tumor grade. Korean J Radiol 2001; 2: 1-7.
Law M, Yang S, Babb JS, et al. Comparison of cerebral blood volume and vascular permeability from dynamic susceptibility contrast-enhanced perfusion MR imaging with glioma grade. AJNR Am J Neuroradiol 2004; 25: 746-755.
Wong JC, Provenzale JM, Petrella JR. Pictorial essay - Perfusion MR imaging of brain neoplasms. American Journal of Roentgenology 2000; 174: 1147-1157.
Cha S, Pierce S, Knopp EA, et al. Dynamic contrast-enhanced T2*-weighted MR imaging of tumefactive demyelinating lesions. AJNR Am J Neuroradiol 2001; 22: 1109-1116.
Pollock JM, Tan H, Kraft RA, et al. Arterial spin-labeled MR perfusion imaging: Clinical applications. Magnetic Resonance Imaging Clinics of North America. 2009; 17: 315-338.
Sadowski EA, Bennett LK, Chan MR, et al. Nephrogenic systemic fibrosis: Risk factors and incidence estimation. Radiology 2007; 243: 148-157.
Daumas-Duport C, Scheithauer B, O’Fallon J, et al. Grading of astrocytomas. A simple and reproducible method. Cancer 1988; 62: 2152-2165.
Brem S. The role of vascular proliferation in the growth of brain tumors. Clin Neurosurg 1976; 23: 440-453.
Zagzag D, Friedlander DR, Dosik J, et al. Tenascin-C expression by angiogenic vessels in human astrocytomas and by human brain endothelial cells in vitro. Cancer Res 1996; 56: 182-189.
Aronen HJ, Gazit IE, Louis DN, et al. Cerebral blood volume maps of gliomas: comparison with tumor grade and histologic findings. Radiology 1994; 191: 41-51.
Cha S, Tihan T, Crawford F, et al. Differentiation of low-grade oligodendrogliomas from low-grade astrocytomas by using quantitative blood-volume measurements derived from dynamic susceptibility contrast-enhanced MR imaging. AJNR Am J Neuroradiol 2005; 26: 266-273.
Maia ACM, Malheiros SMF, da Rocha AJ, et al. MR cerebral blood volume maps correlated with vascular endothelial growth factor expression and tumor grade in nonenhancing gliomas. AJNR Am J Neuroradiol 2005; 26: 777-783.
Scott JN, Brasher PMA, Sevick RJ, et al. How often are nonenhancing supratentorial gliomas malignant? A population study. Neurology 2002; 59: 947-949.
Morita N, Wang S, Chawla S, et al. Dynamic susceptibility contrast perfusion weighted imaging in grading of nonenhancing astrocytomas. J Magn Reson Imaging 2010; 32: 803-808.
Law M, Oh S, Johnson G, et al. Perfusion Magnetic Resonance Imaging Predicts Patient Outcome as an Adjunct to Histopathology: A Second Reference Standard in the Surgical and Nonsurgical Treatment of Low-grade Gliomas. Neurosurgery 2006; 58: 1099-1107.
Sugahara T, Korogi Y, Kochi M, et al. Correlation of MR imaging-determined cerebral blood volume maps with histologic and angiographic determination of vascularity of gliomas. American Journal of Roentgenology 1998; 171: 1479-1486.
Shin JH, Lee HK, Kwun BD, et al. Using relative cerebral blood flow and volume to evaluate the histopathologic grade of cerebral gliomas: Preliminary results. American Journal of Roentgenology 2002; 179: 783i789.
Hakyemez B, Erdogan C, Ercan I, et al. High-grade and low-grade gliomas: Differentiation by using perfusion MR imaging. Clin Radiol 2005; 60: 493-502.
Bai X, Zhang Y, Liu Y, et al. Grading of supratentorial astrocytic tumors by using the difference of ADC value. Neuroradiology 2011; 53: 533-539.
Cho SK, Na DG, Ryoo JW, et al. Perfusion MR imaging: clinical utility for the differential diagnosis of various brain tumors. Korean J Radiol 2002;3: 171-179.
Saito T, Yamasaki F, Kajiwara Y, et al. Role of perfusion-weighted imaging at 3T in the histopathological differentiation between astrocytic and oligodendroglial tumors. European Journal of Radiology 2012; 81: 1863-1869.
Arvinda HR, Kesavadas C, Sarma PS, et al. Glioma grading: sensitivity, specificity, positive and negative predictive values of diffusion and perfusion imaging. J Neurooncol 2009 ;94: 87-96.
Scarabino T, Popolizio T, Trojsi F, et al. Ruolo delle nuove ed avanzate modalità di studio RM nella diagnostica neuroradiologica dei gliomi cerebrali. Radiol med 2008; 114: 448-460.
Lev MH, Ozsunar Y, Henson JW, et al. Glial tumor grading and outcome prediction using dynamic spin-echo MR susceptibility mapping compared with conventional contrast-enhanced MR: confounding effect of elevated rCBV of oligodendrogliomas. AJNR Am J Neuroradiol 2004; 25: 214-221.
Weber MA, Zoubaa S, Schlieter M, et al. Diagnostic performance of spectroscopic and perfusion MRI for distinction of brain tumors. Neurology 2006; 66: 1899-1906.
Danchaivijitr N, Waldman AD, Tozer DJ, et al. Low-Grade Gliomas: Do Changes in rCBV Measurements at Longitudinal Perfusion-weighted MR Imaging Predict Malignant Transformation? Radiology 2008; 247: 170-178.
Kelly PJ, Daumas-Duport C, Scheithauer BW, et al. Stereotactic histologic correlations of computed tomography- and magnetic resonance imaging-defined abnormalities in patients with glial neoplasms. Mayo Clin Proc 1987; 62: 450-459.
Hakyemez B, Erdogan C, Bolca N, et al. Evaluation of different cerebral mass lesions by perfusion-weighted MR imaging. J Magn Reson Imaging 2006; 24: 817-824.
Awasthi R, Verma SK, Haris M, et al. Comparative evaluation of dynamic contrast-enhanced perfusion with diffusion tensor imaging metrics in assessment of corticospinal tract infiltration in malignant glioma. J Comput Assist Tomogr 2010; 34: 82-88.
Law M, Cha S, Knopp EA, et al. High-Grade Gliomas and Solitary Metastases: Differentiation by Using Perfusion and Proton Spectroscopic. MR Imaging 2002; 222: 715-721.
Floriano VH, Ferraz-Filho J, Spotti AR, et al. Perfusion-weighted magnetic resonance imaging in the evaluation of focal neoplastic and infectious brain lesions. Rev Bras Neurol 2010.
Koeller KK, Rushing EJ. From the Archives of the AFIP: Oligodendroglioma and Its Variants: Radiologic-Pathologic Correlation. Radiographics 2005; 25: 1669-1688.
Whitmore RG, Krejza J, Kapoor GS, et al. Prediction of oligodendroglial tumor subtype and grade using perfusion weighted magnetic resonance imaging. J Neurosurg 2007; 107: 600-609.
Giang DW, Poduri KR, Eskin TA, et al. Multiple sclerosis masquerading as a mass lesion. Neuroradiology 1992; 34: 150-154.
Gerstner ER, Batchelor TT. Imaging and response criteria in gliomas. Current Opinion in Oncology 2010; 22: 598-603.
Bisdas S, Kirkpatrick M, Giglio P, et al. Cerebral blood volume measurements by perfusion-weighted MR imaging in gliomas: ready for prime time in predicting short-term outcome and recurrent disease? AJNR Am J Neuroradiol. American Society of Neuroradiology 2009; 30: 681-688.
Law M, Oh S, Babb JS, et al. Low-grade gliomas: Dynamic susceptibility-weighted contrast-enhanced perfusion MR imaging-prediction of patient clinical response. Neuroradiology 2006; 238: 658-667.
Law M, Young RJ, Babb JS, et al. Gliomas: Predicting time to progression or survival with cerebral blood volume measurements at dynamic susceptibility-weighted contrast-enhanced perfusion MR imaging. Radiology 2008;247: 490-498.
Caseiras GB, Chheang S, Babb J, et al. Relative cerebral blood volume measurements of low-grade gliomas predict patient outcome in a multi-institution setting. 2010;73: 215-220.
Romano A, Rossi Espagnet MC, Calabria LF, et al. Impiego clinico della sequenza RM di perfusione con tecnica dinamica contrastografica nei tumori cerebrali. Radiol med 2011; 117: 445-460.
Mangla R, Ginat DT, Kamalian S, et al. Correlation between progression free survival and dynamic susceptibility contrast MRI perfusion in WHO grade III glioma subtypes. J Neurooncol 2014; 116: 325-331.
Jiang Z, Le Bas J-F, Grand S, et al. Prognostic value of perfusion MR imaging in patients with oligodendroglioma: A survival study. J Neuroradiol 2011; 38: 53-61.
Maxwell RE, Long DM, French LA. The clinical effects of a synthetic gluco-corticoid used for brain edema in the practice of neurosurgery. Steroids and Brain Edema 1972.
Meinig G, Reulen HJ, Wende S. Use of Dexamethasone and Frusemide in Brain Edema Resulting from Brain Tumors. Treatment of Cerebral 1982.
Reulen HJ, Hadjidimos A, Schürmann K. The effect of dexamethasone on water and electrolyte content and on rCBF in perifocal brain edema in man. Steroids and Brain Edema. 1972.
Bastin ME, Carpenter TK, Armitage PA, et al. Effects of dexamethasone on cerebral perfusion and water diffusion in patients with high-grade glioma. AJNR Am J Neuroradiol. American Society of Neuroradiology. 2006;27: 402-408.
Andersen C, Jensen FT. Differences in blood-tumour-barrier leakage of human intracranial tumours: quantitative monitoring of vasogenic oedema and its response to glucocorticoid treatment. Acta Neurochir (Wien) 1998.
Badruddoja MA, Krouwer HGJ, Rand SD, et al. Antiangiogenic effects of dexamethasone in 9L gliosarcoma assessed by MRI cerebral blood volume maps. Neuro-Oncology 2003; 5: 235-243.
Quarles CC, Krouwer HGJ, Rand SD, et al. Dexamethasone Normalizes Brain Tumor Hemodynamics as Indicated by Dynamic Susceptibility Contrast MRI Perfusion Parameters. Technol Cancer Res Treat 2005; 4: 245-249.
Wilkinson ID, Jellineck DA, Levy D, et al. Dexamethasone and enhancing solitary cerebral mass lesions: alterations in perfusion and blood-tumor barrier kinetics shown by magnetic resonance imaging. Neurosurgery 2006; 58: 640-646.
Østergaard L, Hochberg FH, Rabinov JD, et al. Early changes measured by magnetic resonance imaging in cerebral blood flow, blood volume, and blood-brain barrier permeability following dexamethasone treatment in patients with brain tumors. J Neurosurg. Journal of Neurosurgery Publishing Group. 1999; 90: 300-305.
Stupp R, Mason WP, van den Bent MJ, et al. Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med. 2005; 352: 987-996.
Brandsma D, Stalpers L, Taal W, et al. Clinical features, mechanisms, and management of pseudoprogression in malignant gliomas. 2008;9: 453-461.
De Wit M, de Bruin HG, Eijkenboom W,et al. Immediate post-radiotherapy changes in malignant glioma can mimic tumor progression. Neurology 2004.
Brandes AA, Franceschi E, Tosoni A, et al. MGMT promoter methylation status can predict the incidence and outcome of pseudoprogression after concomitant radiochemotherapy in newly diagnosed glioblastoma patients. J Clin Oncol 2008; 26: 2192-2197.
Wen PY, Macdonald DR, Reardon DA, et al. Updated Response Assessment Criteria for High-Grade Gliomas: Response Assessment in Neuro-Oncology Working Group. Journal of Clinical Oncology 2010; 28: 1963-1972.
Tsien C, Galban CJ, Chenevert TL, et al. Parametric Response Map As an Imaging Biomarker to Distinguish Progression From Pseudoprogression in High-Grade Glioma. Journal of Clinical Oncology 2010; 28: 2293-2299.
Kong DS, Kim ST, Kim EH, et al. Diagnostic dilemma of pseudoprogression in the treatment of newly diagnosed glioblastomas: the role of assessing relative cerebral blood flow volume and oxygen-6-methylguanine-DNA methyltransferase promoter methylation status. AJNR Am J Neuroradiol. American Society of Neuroradiology 2011; 32: 382-387.
Young RJ, Gupta A, Shah AD, et al. MRI perfusion in determining pseudoprogression in patients with glioblastoma. Clinical Imaging 2013; 37: 41-49.
Gahramanov S, Muldoon LL, Varallyay CG, et al. Pseudoprogression of Glioblastoma after Chemo- and Radiation Therapy: Diagnosis by Using Dynamic Susceptibility-weighted Contrast-enhanced Perfusion MR Imaging with Ferumoxytol versus Gadoteridol and Correlation with Survival. 2013; 266: 842-852.
Friedman HS, Schold SC, Djang WT, et al. Criteria for termination of phase II chemotherapy for patients with progressive or recurrent brain tumor. Neurology 1989.
Chang SM, Prados MD. Chemotherapy for gliomas. Current Opinion in Oncology 1995.
Verhoef C, de Wilt JHW, de Wilt J, et al. Angiogenesis Inhibitors: Perspectives for Medical, Surgical and Radiation Oncology. CPD. 2006;12: 2623-2630.
Gossmann A, Helbich TH, Kuriyama N, et al. Dynamic contrast-enhanced magnetic resonance imaging as a surrogate marker of tumor response to anti-angiogenic therapy in a xenograft model of glioblastoma multiforme. J Magn Reson Imaging 2002; 15: 233-240.
Leach MO, Brindle KM, Evelhoch JL, et al. The assessment of antiangiogenic and antivascular therapies in early-stage clinical trials using magnetic resonance imaging: issues and recommendations. Br J Cancer 2005; 92: 1599-1610.
Sawlani RN, Raizer J, Horowitz SW, et al. Glioblastoma: A Method for Predicting Response to Antiangiogenic Chemotherapy by Using MR Perfusion Imaging-Pilot Study. 2010; 255: 622-628.
Essock-Burns E, Lupo JM, Cha S, et al. Assessment of perfusion MRI-derived parameters in evaluating and predicting response to antiangiogenic therapy in patients with newly diagnosed glioblastoma. Neuro-Oncology 2011; 13: 119-131.
Batchelor TT, Gerstner ER, Emblem KE, et al. Improved tumor oxygenation and survival in glioblastoma patients who show increased blood perfusion after cediranib and chemoradiation. Proc Natl Acad Sci USA. National Academy of Sciences 2013; 110: 19059-19064.
Cha S, Knopp EA, Johnson G, et al. Dynamic contrast-enhanced T2-weighted MR imaging of recurrent malignant gliomas treated with thalidomide and carboplatin. AJNR Am J Neuroradiol 2000; 21: 881-890.
van den Bent MJ, Vogelbaum MA, Wen PY, et al. End Point Assessment in Gliomas: Novel Treatments Limit Usefulness of Classical Macdonald’s Criteria. Journal of Clinical Oncology 2009; 27: 2905-2908.
Gerstner ER, Sorensen AG, Jain RK, et al. Advances in neuroimaging techniques for the evaluation of tumor growth, vascular permeability, and angiogenesis in gliomas. Current Opinion in Neurology 2008; 21: 728-735.
Batchelor TT, Sorensen AG, di Tomaso E, et al. AZD2171, a Pan-VEGF Receptor Tyrosine Kinase Inhibitor, Normalizes Tumor Vasculature and Alleviates Edema in Glioblastoma Patients. Cancer Cell 2007; 11: 83-95.
Hu LS, Baxter LC, Smith KA, et al. Relative cerebral blood volume values to differentiate high-grade glioma recurrence from posttreatment radiation effect: Direct correlation between image-guided tissue histopathology and localized dynamic susceptibility-weighted contrast-enhanced perfusion. MR imaging measurements 2009; 30: 552-558.
Barajas RF Jr, Chang JS, Segal MR, et al. Differentiation of Recurrent Glioblastoma Multiforme from Radiation Necrosis after External Beam Radiation Therapy with Dynamic Susceptibility-weighted Contrast-enhanced Perfusion, MR Imaging1 2009; 253: 486-496.
Xu JL, Shi DP, Dou SW, et al. Distinction between postoperative recurrent glioma and delayed radiation injury using MR perfusion weighted imaging. Wiley Online Library 2011; 55: 587-594.
Margaret Cheng H-L. Dynamic Contrast-Enhanced MRI in Oncology Drug Development. CCP. Bentham Science Publishers 2007; 2: 111-122.
Ali MM, Janic B, Babajani-Feremi A, et al. Changes in Vascular Permeability and Expression of Different Angiogenic Factors Following Anti-Angiogenic Treatment in Rat Glioma. PLoS ONE 2010; 5: e8727.
Hygino da Cruz LC, Rodriguez I, Domingues RC, et al. Pseudoprogression and pseudoresponse: Imaging challenges in the assessment of posttreatment glioma. American Society of Neuroradiology 2011; 32: 1978-1985.
Ellingson BM, Kim HJ, Woodworth DC, et al. Recurrent Glioblastoma Treated with Bevacizumab: Contrast-enhanced T1-weighted Subtraction Maps Improve Tumor Delineation and Aid Prediction of Survival in a Multicenter Clinical Trial. Radiology. Radiological Society of North America. 2013; 271: 200-210.
Lupo JM, Nelson SJ. Advanced magnetic resonance imaging methods for planning and monitoring radiation therapy in patients with high-grade glioma. Seminars in Radiation. Oncology2014; 24: 248-258.
Qiao XJ, Ellingson BM, Kim HJ, et al. Arterial Spin-Labeling Perfusion MRI Stratifies Progression-Free Survival and Correlates with Epidermal Growth Factor Receptor Status in Glioblastoma. AJNR Am J Neuroradiol. American Society of Neuroradiology 2014.
Schmainda KM, Zhang Z, Prah M, et al. Dynamic susceptibility contrast MRI measures of relative cerebral blood volume as a prognostic marker for overall survival in recurrent glioblastoma: Results from the ACRIN 6677/RTOG 0625 multicenter trial. Neuro-Oncology 2015; 364.
Yankeelov TE, Gore JC. Dynamic Contrast Enhanced Magnetic Resonance Imaging in Oncology: Theory, Data Acquisition, Analysis, and Examples. Curr Med Imaging Rev 2009; 3: 91-107.
Golay X, Guenther M. Arterial spin labelling: Final steps to make it a clinical reality. Magn Reson Mater Phy 2012; 25: 79-82.
Jain R. Measurements of tumor vascular leakiness using DCE in brain tumors: clinical applications. Lu H, editor. NMR Biomed. 2013;26: 1042-1049.
Ellingson BM, Bendszus M, Sorensen AG, Pope WB. Emerging techniques and technologies in brain tumor imaging. Neuro-Oncology. Oxford University Press. 2014; 16 Suppl 7: vii12–vii23.
DOI: http://dx.doi.org/10.36162/hjr.v1i1.27
Refbacks
- There are currently no refbacks.